Phase relations in the Tl2 Te–TlBiТe2 –TlTbTe2 system

  • Samira Z. Imamaliyeva Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan https://orcid.org/0000-0001-8193-2122
  • Ganira I Alakbarzade Azerbaijan National Aerospace Agency, 159 Azadlig ave, AZ-1106, Baku, Azerbaijan https://orcid.org/0000-0001-8500-0007
  • Dunya M. Babanly Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan; Azerbaijan State Oil and Industry University, French-Azerbaijani University (UFAZ), 16/21 Azadlıq prospekti, Baku AZ-1101, Azerbaijan https://orcid.org/0000-0002-8330-7854
  • Marina V. Bulanova Frantsevich Institute for Problems of Materials Science, NASU, 3 Krzhizhanovsky st., Kiev 03142, Ukraine https://orcid.org/0000-0002-8691-0982
  • Vagif A. Gasymov Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan https://orcid.org/0000-0001-6233-5840
  • Mahammad B. Babanly Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan https://orcid.org/0000-0001-5962-3710
Keywords: Tl2 Te–TlBiТe2 –TlTbTe2 system, , phase equilibria, solid solutions, powder X-ray diffraction, crystal lattice, topological insulators

Abstract

The phase equilibria in the Tl2Te–TlBiТe2–TlTbTe2 concentration area of the Tl–Bi–Tb-Te quaternary system were investigated by using the differential thermal analysis and powder X-ray diffraction techniques. The diagram of the solid-phase equilibria of this system at room temperature was constructed. It was established that the Tl9BiTe6–Tl9TbTe6 section divides the Tl2Te–TlBiТe2–TlTbTe2 system into two independent subsystems. It was found that the Tl2Te–Tl9BiTe6–Tl9TbTe6 subsystem is characterized by the formation of a wide field of solid solutions with a Tl5Te3 structure (δ-phase) that occupy more than 90% of the area of the concentration triangle. The results of X-ray phase analysis of alloys of the Tl9BiTe6–Tl9TbTe6–TlTbTe2
TlBiТe2 subsystem showed the formation of wide regions of solid solutions based on TlTbTe2 and TlBiTe2 along the section of TlTbTe2–TlBiTe2 ((β1- and β2-phases) and made it possible to determine the location of the heterogeneous phase regions in this subsystem. The parameters of crystal lattices of mutually saturated compositions of the β1-, β2-, and δ-phases are calculated from powder diffraction patterns.
The paper also presents some polythermal sections, isothermal sections at 740 and 780 K of the phase diagram, as well as projections of the liquidus and solidus surfaces of the Tl2Te–Tl9BiТe6–Tl9TbTe6 subsystem. The liquidus surface consists of three fields of the primary crystallization of α (Tl2Te)-, δ- and β1-phase. The constructed isothermal sections clearly demonstrate that the directions of the tie lines do not coincide with the T–x planes of the studied internal sections, which is characteristic of non-quasi-binary polythermal sections. The obtained new phases are of interest as potential thermoelectric and magnetic materials.

Downloads

Download data is not yet available.

Author Biographies

Samira Z. Imamaliyeva, Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan

PhD in Chemistry,
Assistance Professor, Institute of Catalysis and
Inorganic Chemistry, Azerbaijan National Academy of
Sciences, Baku, Azerbaijan; e-mail: samira9597a@gmail.com

Ganira I Alakbarzade, Azerbaijan National Aerospace Agency, 159 Azadlig ave, AZ-1106, Baku, Azerbaijan

PhD student, Azerbaijan
National Aerospace Agency, Baku, Azerbaijan; e-mail:
alakbarzadegi@gmail.com

Dunya M. Babanly, Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan; Azerbaijan State Oil and Industry University, French-Azerbaijani University (UFAZ), 16/21 Azadlıq prospekti, Baku AZ-1101, Azerbaijan

y, DSc in Chemistry, Assistance
Professor, Institute of Catalysis and Inorganic
Chemistry, Azerbaijan National Academy of Sciences,
Azerbaijan State Oil and Industry University, Baku,
Azerbaijan; e-mail: dunya.babanly@ufaz.az.

Marina V. Bulanova, Frantsevich Institute for Problems of Materials Science, NASU, 3 Krzhizhanovsky st., Kiev 03142, Ukraine

DSc in Chemistry, Leading
Researcher, I. M. Frantsevich Institute for Problems of
Materials Science, NAS of Ukraine, Kiev, Ukraine;
e-mail: mvbulanova2@gmail.com

Vagif A. Gasymov, Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan

PhD in Chemistry, Assistance
Professor, Institute of Catalysis and Inorganic
Chemistry, Azerbaijan National Academy of Sciences,
Baku, Azerbaijan; e-mail: v-gasymov@rambler.ru.

Mahammad B. Babanly, Institute of Catalysis and Inorganic Chemistry of the Azerbaijan National Academy of Sciences, 113 H. Javid ave., Baku AZ-1143, Azerbaijan

DSc in Chemistry, Professor,
Associate Member of the Azerbaijan National Academy
of Sciences, Deputy-director of the Institute of
Catalysis and Inorganic Chemistry, Azerbaijan
National Academy of Sciences, Baku State University,
Baku, Azerbaijan; e-mail: babanlymb@gmail.com.

References

Ahluwalia G. K. (ed.). Applications of chalcogenides: S, Se, and Te. Switzerland: Springer; 2017. 461 p. https://doi.org/10.1007/978-3-319-41190-3

Alonso-Vante N. Outlook. In: Chalcogenide materials for energy conversion: Pathways to oxygen and hydrogen reactions. Nanostructure Science and Technology. Springer, Cham; 2018. 226 p.

https://doi.org/10.1007/978-3-319-89612-0_7

Scheer R. , Schock H-W. Chalcogenide photovoltaics: physics, technologies, and thin film devices. Wiley-VCH; 2011. 368 p. https://doi.org/10.1002/9783527633708

Palchoudhury S., Ramasamy K., Gupta A. Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications. Nanoscale Advances. 2020;2(8): 3069–3082. https://doi.org/10.1039/D0NA00399A

Lin S., Li W., Bu Z., Shan B., Pei Y. Thermoelectric p-type Ag9GaTe6 with an intrinsically low lattice thermal conductivity. ACS Applied Energy Materials. 2020;3(2): 1892–1898. https://doi.org/10.1021/acsaem.9b02330

Banik A., Roychowdhury S., Biswas K. The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials. Chemical Communications. 2018;54(50): 6573–6590. https://doi.org/10.1039/C8CC02230E

Otrokov M. M., Klimovskikh I. I., Bentmann H., Zeugner A., Aliev Z. S., Gass S., Wolter A. U. B., Koroleva A. V., Estyunin D., Shikin A. M., Blanco-Rey M., Hoffmann M., Vyazovskaya A. Yu., Eremeev S. V., Koroteev Y. M., Amiraslanov I. R., Babanly M. B., Mamedov N. T., Abdullayev N. A., Zverev V. N., Büchner B., Schwier E. F., Kumar S., Kimura A., Petaccia L., Di Santo G., Vidal R. C., Schatz S., Kisner K., Min C.-H., Moser S. K., Peixoto T. R. F., Reinert F., Ernst A., Echenique P. M., Isaeva A., Chulkov E. V. Prediction and observation of the first antiferromagnetic topological insulator. Nature. 2019; 576(7787): 416–422. https://doi.org/10.1038/s41586-019-1840-9

Babanly M. B., Chulkov E. V., Aliev Z. S., Shevel’kov A. V., Amiraslanov I. R. Phase diagrams in the materials science of topological insulators based on metal chalcogenides. Russian Journal of Inorganic Chemistry. 2017;62(13): 1703–1729. https://doi.org/10.1134/S0036023617130034

Ding J., Liu C., Xi L., Xi J., Yang J. Thermoelectric transport properties in chalcogenides ZnX (X=S, Se): From the role of electron-phonon couplings. Journal of Materiomics. 2021;7(2): 310–319. https://doi.org/10.1016/j.jmat.2020.10.007

Segawa K. Synthesis and characterization of 3D topological insulators: a case TlBi(S1–xSex)2. Science and Technology of Advanced Materials. 2015;16(1): 014405-8. https://doi.org/10.1088/1468-6996/16/1/014405

Usanmaz D., Nath P., Toher C., Plata J. J., Friedrich R., Fornari M., Nardelli M. B., Curtarolo S. Spinodal superlattices of topological insulators. Chemistry of Materials. 2018;30(7): 2331–2340. https://doi.org/10.1021/acs.chemmater.7b05299

Wang Z., Segawa K., Sasaki S., Taskin A. A., Ando Y. Ferromagnetism in Cr-doped topological insulator TlSbTe2. APL Materials. 2015;3: 083302-7. https://doi.org/10.1063/1.4922002

Eremeev S. V., Koroteev Y. M., Chulkov E. V. Ternary thallium-based semimetal chalcogenides Tl–V–VI2 as a new class of three-dimensional topological insulators. JETP Letters. 2010;91(11): 594–598. https://doi.org/10.1134/S0021364010110111

Filnov S. O., Klimovskikh I. I., Estyunin D. A., Fedorov A., Voroshnin V., Koroleva A. V., Shevchenko E. V., Rybkin A. G., Aliev Z. S., Babanly M. B., I. R., Mamedov N. T., Schwier E. F., Miyamoto K., Okuda T., Kumar S., Kimura A., Misheneva V. M., Shikin A. M., Chulkov E. V. Probedependent Dirac-point gap in the gadolinium-doped thallium-based topological insulator TlBi0.9Gd0.1Se2. Physical Review B. 2020;102: 085149-7. https://doi.org/10.1103/PhysRevB.102.085149

Arpino K. E., Wasser B. D., McQueen T. M. Superconducting dome and crossover to an insulating state in [Tl4]Tl1-xSnxTe3. APL Materials. 2015;3(4): 041507-8. https://doi.org/10.1063/1.4913392

Ruan J., Jian S-K., Zhang D., Yao H., Zhang H., Zhang S-C., Xing D. Ideal Weyl semimetals in the chalcopyrites CuTlSe2, AgTlTe2, AuTlTe2, and ZnPbAs2. Physical Review Letters. 2016;116: 226801-5. https://doi.org/10.1103/PhysRevLett.116.226801

Singh B., Sharma A., Lin H., Hasan M. Z., Prasad R., Bansil A. Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors. Physical Review B. 2012;86: 115208-7. https://doi.org/10.1103/PhysRevB.86.115208

Piasecki M., Brik M. G., Barchiy I. E., Ozga K., Kityk I. V., El-Naggar A. M., Albassam A. A., Malakhovskaya T. A., Lakshminarayana G. Band structure, electronic and optical features of Tl4SnX3 (X = S, Te) ternary compounds for optoelectronic applications. Journal of Alloys and Compounds. 2017;710: 600−607. https://doi.org/10.1016/j.jallcom.2017.03.280

Barchij I., Sabov M., El-Naggar A. M., AlZayed N. S., Albassam A. A., Fedorchuk A. O., Kityk I. V. Tl4SnS3, Tl4SnSe3 and Tl4SnTe3 crystals as novel IR induced optoelectronic materials. Journal of Materials Science: Materials in Electronic. 2016;27: 3901-5. https://doi.org/10.1007/s10854-015-4240-4

Shi H., Lin W., Kanatzidis M. G., Szeles C., Du M.-H. Impurity-induced deep centers in Tl6SI4. Journal of Applied Physics. 2017:121(14): 145102-5. https://doi.org/10.1063/1.4980174

Das S., Peters J. A., Lin W. W, Kostina S. S., Chen P., Kim J., Kanatzidis M. G., Wessels B. W. Charge transport and observation of persistent photoconductivity in Tl6SeI4 single crystals. Journal of Physical Chemistry Letters. 2017;8(7): 1538–1544. https://doi.org/10.1021/acs.jpclett.7b00336

Ding G., He J., Cheng Z., Wang X., Li S. Low lattice thermal conductivity and promising thermoelectric figure of merit of Zintl type TlInTe2. Journal of Materials Chemistry C. 2018;6: 13269–13274. https://doi.org/10.1039/C8TC03492C

Shi Y., Assoud A., Ponou S., Lidin S., Kleinke H. A. New material with a composite crystal structure causing ltralow thermal conductivity and outstanding thermoelectric properties: Tl2Ag12Te7+d. Journal of American Chemical Society. 2018;140(27): 8578–8585. https://doi.org/10.1021/jacs.8b04639

Han C., Sun Q., Li Z., Dou S. X. Thermoelectric enhancement of different kinds of metal chalcogenides. Advanced Energy Materials. 2016;6(15): 1600498-1-1600498-36. https://doi.org/10.1002/aenm.201600498

Heinke F., Eisenburger L., Schlegel R., Schwarzmüller S., Oeckler O. The influence of nanoscale heterostructures on the thermoelectric properties of Bi-substituted Tl5Te3. Zeitschrift für anorganische und

allgemeine Chemie. 2017;643: 447–454. https://doi.org/10.1002/zaac.201600449

Maier S., Lefèvre R., Lin X., Nunna R., Berthebaud D., Hèbert S., Mar A., Gascoin F. The solid solution series Tl(V1−xCrx)5Se8: crystal structure, magnetic and thermoelectric properties. Journal of Materials Chemistry C. 2015;3: 10509–10517. https://doi.org/10.1039/C5TC01766A

Guo Q., Kleinke H. Thermoelectric properties of hot-pressed (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb) and Tl10-xLaxTe6 (0,90https://doi.org/10.1016/j.jallcom.2015.01.025

Isaeva A., Schoenemann R., Doert T. Syntheses, Crystal structure and magnetic properties of Tl9RETe6 (RE = Ce, Sm, Gd). Crystals. 2020;10(4): 277-11. https://doi.org/10.3390/cryst10040277

Bangarigadu-Sanasy S., Sankar C. R., Dube P. A., Greedan J. E., Kleinke H. Magnetic properties of Tl9LnTe6, Ln = Ce, Pr, Tb and Sm. Journal of Alloys and Compounds. 2014;589: 389–392. https://doi.org/10.1016/j.jallcom.2013.11.229

Villars P, Prince A. Okamoto H. Handbook of ternary alloy phase diagrams (10 volume set). Materials Park, OH: ASM International; 1995. 15000 p.

Babanly M. B., Mashadiyeva L. F., Babanly D. M., Imamaliyeva S. Z., Taghiyev D. B., Yusibov Y. A. Some aspects of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenid systems by the EMF method. Russian Journal of Inorganic Chemistry. 2019;64(13): 1649–1671. https://doi.org/10.1134/S0036023619130035

Imamaliyeva S. Z. Phase diagrams in the development of thallium-REE tellurides with Tl5Te3 structure and ulticomponent phases based on them. Overview. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(3): 332–347. https://doi.org/10.17308/kcmf.2018.20/570 (In Russ., abstract in Eng.)

Imamaliyeva S. Z., Alakbarzade G. I., Mahmudova M. A., Amiraslanov I. R., Babanly M. B. Experimental study of the Tl4PbTe3–Tl9TbTe6–Tl9BiTe6 section of the Tl–Pb–Bi–Tb–Te system. Materials Research. 2018;21(4): e20180189-6. https://doi.org/10.1590/1980-5373-mr-2018-0189

Imamaliyeva S. Z. , Alakbarova G. I. , Babanly K. N., Amiraslanov I. R., Babanly M. B. Tl2Te–Tl9SbTe6–Tl9TbTe6 system. New Materials, Compounds and Applications. 2018;2(3): 221–230. Available at: http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V2N3/Imamaliyeva%20et%20al.pdf

Imamaliyeva S. Z., Gasanly T. M., Zlomanov V. P., Babanly M. B. Phase Equilibria in the Tl2Te–Tl5Te3–Tl9TbTe6 system. Inorganic Materials. 2017;53(4): 361–368. https://doi.org/10.1134/S0020168517040069

Imamaliyeva S. Z., Gasanly T. M., Zlomanov V. P, Babanly M. B. Phase equilibria in the Tl5Te3–Tl9BiTe6–Tl9TbTe6 system. Inorganic Materials. 2017;53(7): 685–689. https://doi.org/10.1134/S0020168517070093

Asadov M. M., Babanly M. B., Kuliev A. A. Phase equilibria in the system Tl–Te, Izvestiya Akademii Nauk SSSR. Neorganicheskie Materiali. 1977;13(8): 1407–1410. (In Russ.)

Cerny R., Joubert J., Filinchuk Y., Feutelais Y. Tl2Te and its relationship with Tl5Te3. Acta Crystallographica Section C. 2002;58(5): 163. https://doi.org/10.1107/s0108270102005085

Babanly M. B., Azizulla A., Kuliev A. A. System Tl2Te–Bi2Te3–Te. Russian Journal of Inorganic Chemistry. 1985;30(9): 2356–2359. (In Russ.)

Pradel A., Tedenac J. C., Brun G., Maurin M. Mise au point dans le ternaireTl–Bi–Te. Existence de deux phases nonstoechiometriques de type TlBiTe2. Journal of Solid State Chemistry. 1982;5(1): 99–111. https://doi.org/10.1016/0022-4596(82)90296-1

Duczmal M. Structure, wlasciwosci magnetzcyne i pole krzstalicyne w potrojnzch chalkogenkach lantonowcow i talu TlLnX2 (X = S, Se lub Te). Monografie. Wroclaw: Politechniki Wroclawskiej; 2003. 67 p. (In Polish)

Doert T., Böttcher P. Crystal structure of bismuth nonathallium hexatelluride BiTl9Te6. Zeitschrift für Kristallographie. 1994;209: 95. https://doi.org/10.1524/zkri.1994.209.1.95

Imamaliyeva S. Z., Mekhdiyeva I. F., Gasymov V. A., Babanly M. B. Tl–Bi–Er–Te system in the composition region Tl2Te–Tl9BiTe6–Tl9ErTe6. Russian Journal of Inorganic Chemistry. 2019;64(7): 907–913. https://doi.org/10.1134/S0036023619070192

Alakbarzade G. I. Solid-phase equilibria in the TlBiТe2–TlTbTe2 system. Chemical Problems. 2019;4: 565–570. https://doi.org/10.32737/2221-8688-2019-4-565-570

Afinogenov Yu. P., Goncharov E. G., Semenova G. V., Zlomanov V. P. Fiziko-khimicheskii analiz mnogokomponentnykh sistem [Physicochemical analysis of multicomponent systems]. Moscow: MFTIB; 2006. 332 p. (In Russ.)

Published
2021-03-16
How to Cite
Imamaliyeva, S. Z., Alakbarzade, G. I., Babanly, D. M., Bulanova, M. V., Gasymov, V. A., & Babanly, M. B. (2021). Phase relations in the Tl2 Te–TlBiТe2 –TlTbTe2 system. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(1), 32-40. https://doi.org/10.17308/kcmf.2021.23/3296
Section
Статьи