Anomalous behaviour of dynamic electrical conductivity in semiconductor ferroelectric ceramics near the phase transition temperature

Keywords: Semiconductor ceramics, Impedance spectroscopy, Negative capacitance effect, Posistor

Abstract

The article presents the results of a study of the electrical properties of semiconductor perovskite ceramics based on a solid solution of barium-strontium titanate with the addition of the rare earth element of cerium with the initial formula Ba1–x–y SrxCeyTiO3 (x = 0.05, y = 0.003). A scanning electron microscope was used to obtain images of the sample surfaces and the elemental composition data. The measurements were performed by impedance spectroscopy in the temperature range of 348-385 K in the frequency range of 102–106 Hz using an LCR metre. It was found that there is an anomalous behaviour in the dynamic electrical conductivity of the samples in the temperature range close to the ferroelectricparaelectric
phase transition. This is expressed by a decrease in the value of the real part of the dynamic conductivity with
an increase in frequency. An analysis of the simplified equivalent circuit of the intergranular barrier showed that this anomaly can be explained by introducing an inductive element into the circuit. This element can be considered a “negative capacitance element”. Following the results of the study, a conclusion was made about the generalised character of the phenomenon

Downloads

Download data is not yet available.

Author Biographies

Gevorg S. Grigoryan, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Physics and
Mathematics, Department of Experimental Physics,
Voronezh State University, Voronezh, Russian
Federation; e-mail: gri7287@yandex.ru

Alexander M. Solodukha, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Physics and
Mathematics, Professor at the Department of
Experimental Physics, Voronezh State University,
Voronezh, Russian Federation; e-mail: asn2@yandex

References

Lines and M. E., Glass A. M. Principles and applications of ferroelectrics and related Materials. Oxford University Press; 2001. https://doi.org/10.1093/acprof:oso/9780198507789.001.0001

Moulson A. J. Electroceramics: Materials, Properties. Wiley; 2003. p. 576. https://doi.org/10.1002/0470867965

Chen Y. L., Yang S. F. PTCR effect in donor doped barium titanate: review of compositions, microstructures, processing and properties. Advances in Applied Ceramics. 2011; 110(5): 257–269. https://doi.org/10.1179/1743676111Y.0000000001

Katsu H. Crystal- and defect-chemistry of fine grained thermistor ceramics on BaTiO3 basis with BaOexcess. Schriften des Forschungszentrums Jülich. Reihe Information; 2011;18: p. 163.

Heywang W. Semiconducting barium titanate. Journal of Materials Science. 1971;6: 1214–1226. https://doi.org/10.1007/BF00550094

Champness C. H., Clark W. R. Anomalous inductive effect in selenium Schottky diodes. Applied Physics Letters.1990;56(12): 1104–1106. https://doi.org/10.1063/1.102581

Wu X., Yang E. S., Evans H. L. Negative capacitance at metal-semiconductor interfaces Journal of Applied Physics.1990;68(6): 2845–2848. https://doi.org/10.1063/1.346442

Gavrilyachenko V. G., Kabirov Y. V., Panchenko E. M., Sitalo E. I., Gavrilyachenko T. V., Milov E. V., Lyanguzov N. V. Specific features of the dielectric spectrum of CaCu3Ti4O12 in the low-frequency range. Physics of the Solid State. 2013;55(8): 1651–1654. https://doi.org/10.1134/s1063783413080131

Zagni N., Pavan P., Alam M. A. Two-dimensional MoS2 negative capacitor transistors for enhanced (super-Nernstian) signal-to-noise performance of next-generation nano biosensors. Applied Physics Letters. 2019; 114: 233102. https://doi.org/10.1063/1.5097828

Ko E., Shin J., Shin C. Steep switching devices for low power applications: negative differential capacitance/resistance field effect transistors. Nano Convergence. 2018;5(2): 1–9. https://doi.org/10.1186/s40580-018-0135-4

Li J., Liu Y., Han G., Zhou J., Hao Y. Comparative study of negative capacitance field-effect transistors with different MOS capacitances. Nanoscale Research Letters. 2019;14(171): 1–6.

https://doi.org/10.1186/s11671-019-3013-z

Peng Y., Liu Y., Han G., Zhang J., Hao Y. Germanium negative capacitance field effect transistors: impacts of Zr Composition in Hf1-xZrxO2. Nanoscale Research Letters. 2019;14 (25): 1–8.

https://doi.org/10.1186/s11671-019-2927-9

Peng Y., Han G., Xiao W., Wu J., Liu Y., Zhang J., Hao Y. Nanocrystal-embedded-insulator (NEI) ferroelectric FETs for negative capacitance device and non-volatile memory applications. Nanoscale Research Letters. 2019;14(115): 1–9. https://doi.org/10.1186/s11671-019-2943-9

Starzonek S., Drozd-Rzoska A., Rzoska J. S., Zhang K., Pawlikowska E., Kedzierska-Sar A., Szafran M., Gao F. Polymer matrix ferroelectric composites under pressure: Negative electric capacitance and glassy dynamics. The European Physical Journal E. 2019;42(118): 1–7. https://doi.org/10.1140/epje/i2019-11876-9

Zhang S., Liu H., Zhou J., Liu Y., Han G., Hao Y. ZrOxNegative capacitance field-effect transistor with sub-60 subthreshold swing behavior. NanoscaleResearch Letters. 2021;16(21): 2–6.

https://doi.org/10.1186/s11671-020-03468-w

Wong C., Salahuddin S. Negative capacitance transistors. Proceedings of the IEEE. 2019;107(1): 49–62. https://doi.org/10.1109/JPROC.2018.2884518

Gupta A. K., Raman A., & Kumar N. Chargeplasma-based negative capacitance ring-FET: Design, investigation and reliability analysis. Journal of Electronic Materials. 2020;49(3): 4852–4863.

https://doi.org/10.1007/s11664-020-08205-8

Macklen E. D. NTC Thermistor Materials. In: Concise Encyclopedia of Advanced Ceramic Materials. 1991. p. 328–331. https://doi.org/10.1016/b978-0-08-034720-2.50091-5

Sekushin N. A. Istomin P. V., Ryabkov Y. I., Goldin B. A. Electrical properties of ceramic synthesized from natural ilmenite-containing raw materials. Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences. 2012;2(10): 20–28. Available at: https://elibrary.ru/item.asp?id=17954194 (In Russ., abstract in Engl.)

Sekushin N. A. Method of presentation of experimental data in impedance spectroscopy. Russian Journal of Electrochemistry. 2009;45(11): 1300–1305. https://doi.org/10.1134/S1023193509110123

Sekushin N. A. Two-frequency criterion of the presence of inductive component in the electrochemical cell impedance. Russian Journal of Electrochemistry. 2010;46(3): 345–353. https://doi.org/10.1134/S102319351003013

Published
2021-06-04
How to Cite
Grigoryan, G. S., & Solodukha, A. M. (2021). Anomalous behaviour of dynamic electrical conductivity in semiconductor ferroelectric ceramics near the phase transition temperature. Condensed Matter and Interphases, 23(2), 212-217. https://doi.org/10.17308/kcmf.2021.23/3431
Section
Original articles