Cylindrical model of electrochromic colouration of hydrated vanadium pentoxide thin films with point contacts

  • Petr P. Boriskov Petrozavodsk State University, 33 Lenina prospekt, Petrozavodsk 185910, Russian Federation https://orcid.org/0000-0002-2904-9612
  • Sergei V. Burdyukh Petrozavodsk State University, 33 Lenina prospekt, Petrozavodsk 185910, Russian Federation; Institute of Geology of the Karelian Research Centre of the Russian Academy of Sciences 11 Pushkinskaya ul., Petrozavodsk 185910, Russian Federation https://orcid.org/0000-0002-1954-7300
  • Olga Ya. Berezina Petrozavodsk State University, 33 Lenina prospekt, Petrozavodsk 185910, Russian Federation https://orcid.org/0000-0003-4055-5759
Keywords: Electrochromism, Hydrated vanadium pentoxide, Plasma-immersion ion implantation, Ion current kinetics

Abstract

This article analyses experiments on the kinetics of the internal electrochromism of thin (micron) films of hydrated vanadium pentoxide xerogel with point contacts. It describes a cylindrical model of electrochromic colouration, which was used to evaluate the concentration of the colour centres in the initial film and after additional hydrogenation of this film by plasmaimmersion ion implantation.
When we compared the calculated values of the concentration of colour centres with the equilibrium concentration of protons in the xerogel, we saw that the mobility of the protons migrating from the depth of the film to the cathode region, which are involved in the electrochemical reaction, was not a determinant of the electrochromism kinetics.
The rate of electrochromic colouration could be increased by the formation of layered film structures based on hydrated vanadium pentoxide, which have increased overall electron conductivity and, as a consequence, low faradaic resistance of the electrochromic cathodic reaction.

Downloads

Download data is not yet available.

Author Biographies

Petr P. Boriskov, Petrozavodsk State University, 33 Lenina prospekt, Petrozavodsk 185910, Russian Federation

PhD in Physics and Mathematics,
leading engineer, Institute of Physics and Technology,
Petrozavodsk State University, Petrozavodsk, Russian
Federation; e-mail: boriskov@petrsu.ru

Sergei V. Burdyukh, Petrozavodsk State University, 33 Lenina prospekt, Petrozavodsk 185910, Russian Federation; Institute of Geology of the Karelian Research Centre of the Russian Academy of Sciences 11 Pushkinskaya ul., Petrozavodsk 185910, Russian Federation

PhD in Physics and Mathematics,
research fellow, Institute of Geology of the Karelian
Research Centre of the Russian Academy of Sciences,
Petrozavodsk, Russian Federation; e-mail: burduch@gmail.com

Olga Ya. Berezina, Petrozavodsk State University, 33 Lenina prospekt, Petrozavodsk 185910, Russian Federation

PhD in Physics and Mathematics,
Assistant Professor at the Department of General
Physics, Petrozavodsk State University, Petrozavodsk,
Russian Federation; e-mail: berezina@petrsu.ru

References

Monk P. M. S., Mortimer R. J., Rosseinsky D. R. Electrochromism and electrochromic devices. Cambridge University Press; 2007. 512 p. https://doi.org/10.1017/cbo9780511550959

Chernova N. A., Roppolo M., Dillonb A. C, Whittingham M. S. Layered vanadium and molybdenum oxides: batteries and electrochromics. Journal of Materials Chemistry. 2009;19(17) 2526–2552. https://doi.org/10.1039/B819629J

Schneider K., Lubecka M., Czapla A. V2O5 thin films for gas sensor applications. Sensors and Actuators B: Chemical. 2016;236: 970–977. https://doi.org/10.1016/j.snb.2016.04.059

Yakovleva D. S., Malinenko V. P., Pergament A. L., Stefanovich G. B. Electrical and optical properties of thin films of hydrated vanadium pentoxide featuring electrochromic effect. Technical Physics Letters. 2007;33(12): 1022–1024. https://doi.org/10.1134/S1063785007120115

Yakovleva D. S., Pergament A. L., Berezina O. Ya., Boriskov P. P., Kirienko D. A., Pikulev V. B. Internal electrochromism in vanadium pentoxide xerogel films. Materials Science in Semiconductor Processing. 2016;44: 78–84. https://doi.org/10.1016/j.mssp.2016.01.003

Burdyukh S. V., Berezina O. Ya., Pergament A. L., Lugovskaya L. A., Kolyagin Yu. G. Effect of hydrogenation on the optical properties and internal electrochromism in vanadium pentoxide xerogel films. Thin Solid Films. 2018; 656: 22–29. https://doi.org/10.1016/j.tsf.2018.04.026

Livage J. Vanadium pentoxide gels. Chemistry of Materials... 1991;3(4): 578–593. https://doi.org/10.1021/cm00016a006

Bullot J., Gourier D., Gallais O., et al. Thin layers deposited from V2O5 gels. l. A conductivity study. J. Non-Cryst. Solids. 1984;68(1): 123–134.

Barboux P., Baffier N., Morineau R., Livage J. Diffusion protonique dans les xerogels de pentoxyde de vanadium. Solid State Ionics. 1983, v. 9-10, 1073–1080. https://doi.org/10.1016/0167-2738(83)90133-9

Sanchez C., Bobonneau F., Morineau R., Livage J. Semiconducting properties of V2O5 gels. Philosophical Magazine B. 1983;47(3): 279–290. https://doi.org/10.1080/13642812.1983.9728310

Burdyukh S. V., Berezina O. Y., Boriskov P. P., Pergament A. L., Yakovleva D. S. Kinetics of coloration in hydrogenated vanadium pentoxide films under an internal electrochromic effect. Technical Physics Letters. 2018;44(9): 779–782. https://doi.org/10.1134/S1063785018090043

Mazda F. F. Electronic instruments and measurement techniques. New York: Cambridge University Press; 1987., 312 p.]

Bard A. J., Faulkner L. R. Electrochemical methods: fundamentals and applications. Toronto: John Wiley & Sons, Inc.; 2001. 833 p.

Published
2021-11-24
How to Cite
Boriskov, P. P., Burdyukh, S. V., & Berezina, O. Y. (2021). Cylindrical model of electrochromic colouration of hydrated vanadium pentoxide thin films with point contacts. Condensed Matter and Interphases, 23(4), 475-481. https://doi.org/10.17308/kcmf.2021.23/3666
Section
Original articles