PERIODIC STATES NEAR THE PLANE DEFECT WITH NON-LINEAR RESPONSE SEPARATING NON-LINEAR SELF-FOCUSING AND LINEAR CRYSTALS
Abstract
The paper presents a model describing the peculiarities of localised excitation on the boundary between linear and nonlinear self-focusing media. The medium boundary is a plane defect with internal nonlinear properties. The boundary of nonlinear media, characterised by various parameters of anharmonicity of the interatomic interaction, creates a disturbance of the medium characteristics, which is located at distances much smaller than the width of the localization of propagating waves. The model is based on the nonlinear Schrödinger equation with a nonlinear self-consistent potential. The problem is reduced to the solution of the linear and nonlinear Schrödinger equations on half-spaces coupled by the boundary conditions. The nonlinearity in the Schrödinger equation is assumed to be of the Kerr type with a positive parameter. Explicit solutions of nonlinear Schrödinger equations satisfying the boundary conditions were found for positive and negative nonlinearity parameters. It is shown that the existence of nonlinear spatially inhomogeneous states of several types determined by various periodic solutions of the nonlinear Schrödinger equation is possible in the system under consideration. The dispersion relations determining the energy of such stationary states were obtained and analysed. The energy dependences on the system parameters for stationary states in various limiting cases were obtained in an explicit form. It was established that resonance states exist in the spectrum, determined exclusively by the nonlinear properties of the defect. The additions to the spectral density of states were obtained, and its characteristic features were determined.
Downloads
References
2. Panyayev I. S., Sannikov D. G. Computer Optics, 2017, vol. 41, pp. 183-191. (in Russ.)
3. Ahmediev N. N., Korneev V. I., Kuzmenko U. V. Sov. Phys. JETP, 1985, vol. 61, no. 1, pp. 62-67. Available at: http://www.jetp.ac.ru/cgi-bin/dn/e_061_01_0062.pdf
4. Gorentsveig V. I., Kivshar Yu. S., Kosevich A. M., Syrkin E. S. Sov. Low Temp. Phys., 1990, vol. 16, p. 1472-1482. (in Russ.)
5. Gerasimchuk I. V., Gorobets Yu. I., Gerasimchuk V. S. Journal of Nano- and Electronic Physics, 2016, vol. 2, pp. 02020-17. DOI: 10.21272/jnep.8(2).02020
6. Davydov A. S. Solitons in Molecular Systems. Kiev, Naukova Dumka Publ., 1984, 288 p. (in Russ.)
7. Gerasimchuk I. V., Kovalev А. S. Low Temp. Phys., 2000, vol. 26, no. 8, pp. 799–809. (in Russ.)
8. Savotchenko S. E. Rus. Condensed Matter and Interphases, 2017, vol. 19, no. 2, pp. 291–259. Available at: http://www.kcmf.vsu.ru/article.php?l=ru&aid=823 (in Russ.)
9. Savotchenko S. E. Sov. Technical Physics. 2017, vol. 62, no. 12, pp. 1776–1781. DOI: https://doi:10.21883/JTF.2017.12.45197.2282
10. Savotchenko S. E. Russian Physics Journal, 2004, vol. 47, no. 5, pp. 556–562. Available at: https://link.springer.com/content/pdf/10.1023%2FB%3ARUPJ. 0000046330.92744.73.pdf
11. Savotchenko S. E. Proceedings of Voronezh State University. Series: Physics. Mathematics, 2016, no. 4, pp. 51–59. Available at: http://www.vestnik.vsu.ru/pdf/physmath/2016/04/2016-04-05.pdf (in Russ.)
12. Savotchenko S. E. Rus. Scientific Bulletins of BelSU. Ser.: Mathematics. Physics, 2017, no. 20(269), pp. 79-85. Available at: http://nv.bsu.edu.ru/nv/mag/06/archive/ (in Russ.)
13. Savotchenko S. E. Sov. JETP, 2018, vol. 153, no. 2, pp. 339–348. DOI: https://doi:10.7868/S0044451018020153
14. Savotchenko S. E. Proceedings of Voronezh State University. Series: Physics. Mathematics, 2018, no. 1, pp. 42–51. Available at: http://www.vestnik.vsu.ru/pdf/physmath/2018/01/2018-01-04.pdf (in Russ.)
15. Gerasimchuk I. V. Journal of Nano- and Electronic Physics, 2012. vol. 4, no. 4. pp. 04024-1-4. Available at: https://jnep.sumdu.edu.ua/ru/component/content/full_article/883
16. Gerasimchuk I. V., Gorbach P. K., Dovhopolyi P. P. Ukr. J. Phys., 2012, vol. 57, no. 6, pp. 678-683. Available at: http://archive.ujp.bitp.kiev.ua/files/journals/57/6/570614p.pdf.
17. Gerasimchuk I. V. Sov. JETP, 2015, vol. 121, no. 4, pp. 596-605. DOI: https://doi:10.7868/S0044451015100053
18. Savotchenko S. E. Modern Physics Letters B, 2018, vol. 32, no. 10, pp. 1850120–12. DOI: https://doi.org/10.1142/S0217984918501208
19. Savotchenko S. E. Rus. Condensed Matter and Interphases, 2017, vol. 19, no. 4, pp. 567–572. Available at: http://www.kcmf.vsu.ru/article.php?l=ru&aid=855 (in Russ.)
20. Kosevich A. M. Sov. JETP, 1999, vol. 88, no. 1, pp. 168–173. Available at: https://link.springer.com/content/pdf/10.1134%2F1.558779.pdf.
21. Kosevich A. M., Matsokin D. V., Savotchenko S. E. Sov. JETP Letters, 2001, vol. 73, no. 11, pp. 600–603. Available at: https://link.springer.com/content/pdf/10.1134%2F1.1392420.pdf.
22. Savotchenko S. E. Russian Physics Journal, 2001, vol. 44, no. 4, pp. 412-419. DOI: https://doi:10.1023/A:1011952514072
23. Savotchenko S. E. Russian Physics Journal, 2002, vol. 45, no. 12, pp. 1148-1158. DOI: https://doi:10.1023/A:1023858101297