PHASE DIAGRAMS IN THE DEVELOPMENT OF THALLIUM-REE TELLURIDES WITH Tl5Te3 STRUCTURE AND MULTICOMPONENT PHASES BASED ON THEM OVERVIEW

  • Samira Z. Imamaliyeva PhD (Chem.), Assistance Professor, Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, Baku, Azerbaijan; (+994) 505368127, e-mail: samira9597a@gmail.com
Keywords: thallium chalcogenides, structural analogues of Tl5Te3, thallium-REE tellurides, crystal structure, phase diagrams, solid solutions, thermoelectric materials.

Abstract

Ternary structural analogues of Tl5Te3  are of considerable scientific and practical interest as promising functional materials with thermoelectric, optical, and magnetic properties, as well as topological insulators properties and superconductivity.
The study included the systematization of the literature about the ternary lanthanides containing structural analogues of this compound and multicomponent phases based on them. Particular attention is paid to the works dedicated to the study of the phase equilibria in ternary and more complex systems forming phases with the Tl5Te3 structure. In a number of works, some polythermal and isothermal sections of the phase diagram, as well as projections of the liquidus and solidus surfaces, were constructed for the Tl2Te–Tl5Te3–Tl9LnTe6 concentration areas of the ternary systems Tl-Ln-Te (Ln-Nd, Gd, Sm, Tb, Tm). It was established that all types of Tl9LnTe6 ternary compounds melt with decomposition by a peritectic reaction. They are phases of variable composition (δ-phase) and their homogeneity region occupies more than 90 % of the Tl2Te–Tl5Te3–Tl9LnTe6 concentration triangle. The phase equilibria along the Tl2Te–Tl9LnTe6–Tl9BVTe6 (I) Tl5Te3–Tl9LnTe6–Tl4AIVTe3(Tl9BVTe6) (II) and Tl9LnTe6–Tl4AIVTe3–Tl9BVTe6 (III)(AIV-Sn, Pb; BV-Sb, Bi) concentration planes of the corresponding quaternary and more complex systems was also studied in detail. It was established that sections (I) are characterised by the formation of wide areas, whereas sections (II) and (III) are unlimited solid solutions with a Tl5Te3 structure. The features of the crystal structure, the thermodynamic and some physical properties of these compounds, and the phases of variable composition, were considered.

The constructed T-x-y diagrams and their various isothermal sections can be used to select alloy compositions used to grow single crystals of the d-solid solutions with a given composition by the method of directional crystallization.

 ACKNOWLEDGMENTS

The work has been carried out within the framework of the international joint research laboratory “Advanced Materials for Spintronics and Quantum Computing” (AMSQC) established between Institute of Catalysis and Inorganic Chemistry of ANAS (Azerbaijan) and Donostia International Physics Center (Basque Country, Spain).

Downloads

Download data is not yet available.

References

1. Fiziko-himicheskie svojstva poluprovodnikovyh veshchestv. Spravochnik [Physical and Chemical Properties of Semiconductor Substances. Directory]. Eds: Novoselova A. V. and Lazarev V. B. Moscow, Nauka Publ., 1976, 339 p. (in Russ.)
2. Abrikosov N. Kh., Bankina V. F., Poretskaya L. V., Skudnova E. V., Chizhevskaya S. N. Poluprovodnikovye hal'kogenidy i splavy na ih osnove [Semiconductor Chalcogenides and Their Alloys]. Moscow, Nauka Publ., 1975, 216 p. (in Russ.)
3. Nanomaterialy: svojstva i perspektivnye prilozheniya [Nanomaterials: properties and promising applications]. Ed: Yaroslavtsev A. B. Moscow, Nauchnyj Mir Publ., 2014, 456 p. (in Russ.)
4. Ahluwalia G. K. (Ed.). Applications of Chalcogenides: S, Se, and Te, Springer. 2016, 461 p.
5. Kolobov A. V., Tominaga J. Two-Dimensional Transition-Metal Dichalcogenides. Springer International Publishing, 2016, 538 p.
6. Novoselov K. S., Geim A. K., Morozov S. V., et al. Nature, 2005, vol. 438, pp. 197–200. DOI: 10.1038/nature04233
7. Kane C. L. Nature, 2008, vol. 4, pp. 348–349. DOI: 10.1038/nphys955
8. Sa B., Sun Z. and Wu B. Nanoscale, 2016, vol. 8, pp. 1169-1178. DOI: 10.1039/c5nr06871a
9. Su L., Gan Y. X. Advances in Thermoelectric Energy Conversion Nanocomposites. In Advances in Composite Materials for Medicine and Nanotechnology. Intech. 2011, pp. 119-180. DOI: 10.5772/14868
10. Shevelkov A. V. Russ. Chem. Rev., 2008, vol. 77, pp. 1-19. DOI: 10.1070/rc2008v077n01abeh003746
11. Tan G. J., Hao S.G., Zhao J., et al. J. Am. Chem. Soc., 2017, vol. 139(18), pp. 6467-6473. DOI: 10.1021/jacs.7b02399
12. Eremeev S. V., Landolt G., Menshchikova T. V., et al. Nat. Commun., 2012, vol. 3, pp. 635. DOI: 10.1038/ncomms1638
13. Okuda T., Maegawa T., Ye M., et al. Phys. Rev. Lett., 2013, vol. 111, pp. 206803-206808. DOI: 10.1103/physrevlett.111.206803
14. Niesner D., Otto S., Hermann V., et al. Phys. Rev. B, 2014, vol. 89, pp. 081404-081409. DOI: 10.1103/physrevb.89.081404
15. Viti L., Coquillat D., Politano A., et al. Nano Lett., 2016, vol. 16, pp. 80−87. DOI: 10.1021/acs.nanolett.5b02901
16. Pesin D., MacDonald A. H. Nature Mater, 2012, vol. 11, pp. 409–416. DOI: 10.1038/nmat3305
17. Men'shov V. N., Tugushev V. V., Chulkov E. V. JETP Lett., 2012, vol. 96, no. 7, pp. 445–451. DOI: 10.1134/s0021364012190113
18. Kuroda K., Ye M., Kimura A., et al. Phys. Rev. Lett., 2010, vol. 105, pp. 146801-1-146801 -4. DOI: 10.1103/physrevlett.105.146801
19. Singh B., Lin H., Prasad R., and Bansil A. Phys. Rev. B, 2016, vol. 93, pp. 085113-085120. DOI: 10.1103/physrevb.93.085113
20. Ruan J., Jian S. K., Zhang D., et al. Phys. Rev. Lett., 2016, vol. 115, pp. 226801-1-226801-4. DOI: 10.1103/PhysRevLett.116.226801
21. McGuire M. A., Reynolds T. K., DiSalvo F. J. Chem. Mater, 2005, vol. 17, pp. 2875-2885. DOI: 10.1021/cm050412c
22. Matsmoto H., Kurosaki K., Muta H., Yamanaka S. J. Electr. Mat, 2009, vol. 38, no. 7, pp. 1350-1353. DOI: 10.1007/s11664-009-0664-z
23. Kurosaki K., Uneda H., Muta H., Yamanaka S. J. Alloys Compd., 2005, vol. 395, no. 1-2, pp. 304-306. DOI: 10.1016/j.jallcom.2004.11.035
24. Das S., Peters J. A., Lin W. W, et al. J. Phys. Chem. Lett., 2017, vol. 8, no. 7, pp. 1538-1544. DOI: 10.1021/acs.jpclett.7b00336
25. Johnsen S., Liu Z. F., Peters J. A., et al. J. Am. Chem. Soc., 2011, vol. 133, pp. 10030–10033. DOI: 10.1021/ja202540t
26. Neorganicheskaya himiya: v 3 t. / T.1: Fiziko- himicheskie osnovy neorganicheskoj himii [Inorganic Chemistry: in 3 vol. / vol. 1: Physicochemical Basis of Inorganic Chemistry]. Ed. Tretyakov Yu. D. Moscow, Akademiya Publ., 2012, 240 p. (in Russ.)
27. Ioffe A. F. Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch Limited, London, 1957.
28. Asadov M. M., Babanly M. B., and Kuliev A. A. Izv. Akad. Nauk SSSR, Neorg. Mater., 1977, vol. 13, no. 8, pp. 1407–1410.
29. Okamoto H. J. Phase Equilib, 2000, vol. 21, no. 5, p. 501. DOI: 10.1361/105497100770339833
30. Bhan S, Shubert K. J. Less. Сommon. Metals, 1970, B. 20, no. 3, pp. 229-235. DOI: 10.1016/0022-5088(70)90066-4
31. Schewe I., Böttcher P., Schnering H. G. Z. Kristallogr., 1989, Bd 188, pp. 287-298. DOI: 10.1524/zkri.1989.188.3-4.287
32. Villars P., Prince A., Okamoto H. Handbook of Ternary Alloy Phase Diagrams (10 Volume Set). ASM International, 1995, 15000 р.
33. Tomashyk V., Feychuk P., Shcherbak L. Ternary Alloys Based on II-VI Semiconductor Compounds. CRC Press, 2013, 560 p.
34. Babanly M. B., Chulkov E. V., Aliev Z. S., et al. Russ. J. Inorg. Chem., 2017, vol. 62, no. 13, pp. 1703–1729. DOI: 10.1134/s0036023617130034
35. Matsumoto H., Kurosaki K., Muta H. and Yamanaka S. Mater. Trans., 2009, vol. 50, no.7, pp. 1582-1585. DOI: 10.2320/matertrans.e-m2009803
36. Tao X., Jund P., Viennois R., and Jean-Claude Tedenac J. Phys. Chem. A, 2011, vol. 115, pp. 8761–8766. DOI: 10.1021/jp204592e
37. Wolfing B., Kloc C., Teubner J., Bucher E. Phys. Rev. Lett., 2001, vol. 36, no. 19, pp. 4350-4353. DOI: 10.1103/physrevlett.86.4350
38. Yamanaka Sh., Kosuka A., Korosaki K. J. Alloys Compd., 2003, vol. 352, pp. 275-278. DOI: 10.1016/s0925-8388(02)01114-3
39. Guo Q., Chan M., Kuropatwa B. A., et al. Chem. Mater., 2013, vol. 25, no. 20, pp. 4097–4104. DOI: 10.1021/cm402593f
40. Kurosaki K., Kosuga A., Charoenphakdee A. et al. Mater. Trans, 2008, vol. 49, no.8, pp.1728-1730. DOI: 10.2320/matertrans.e-mra2008815
41. Kosuga A, Kurosaki K., Muta H., Yamanaka S. J. Appl. Phys., 2006, vol. 99, pp. 063705-1-063705-4. DOI: 10.1063/1.2181427
42. Kurosaki K., Uneda H., Muta H and Yamanaka S. J. Alloys Compd., 2004, vol. 376, pp. 43-48. DOI: 10.1016/j.jallcom.2004.01.018
43. Kurosaki K., Kosuga A., Muta H. and Yamanaka S. Mater. Trans. JIM, 2005, vol. 46, pp. 1502-1505. DOI: 10.2320/matertrans.46.1502
44. Jund P., Tao X., Viennois R. and Tédenac J-C. Solid State Phen., 2011, vol. 172-174, pp. 985-989. DOI: 10.4028/www.scientific.net/ssp.172-174.985
45. Kuropatwa B. A., Assoud A., Kleinke H. J. Alloys Compd., 2011, vol. 509, no. 24 pp. 6768–6772. DOI: 10.1016/j.jallcom.2011.03.182
46. Guo Q., Assoud A., Kleinke H. Adv. Energy Mater., 2014, vol. 4, no. 14, pp. 1400348/1-8. DOI: 10.1002/aenm.201400348
47. Shah W. H., Khan W. M., Tajudin S., et al. Chalcogenide Letters, 2017, vol. 14, no. 5, pp. 187 – 193.
48. Guo Q., Chan M., Kuropatwa B. A., Kleinke H. J. Appl. Phys, 2014, vol. 116, pp. 183702/1-9. DOI: 10.1063/1.4901460
49. Kuropatwa B. A., Guo Q., Assoud A., Kleinke H. Z. Anorg. Allg. Chem, 2014, vol. 640, p. 774-780. DOI: 10.1002/zaac.201300577
50. Shah W. H., Khan A., Waqas M., Syed W. A. Chalcogenide Letters, 2017, vol. 14, no. 2, pp. 61–68.
51. Heinke F., Eisenburger L., Schlegel R., et al. Z. Anorg. Allg. Chem, 2017, vol. 643, pp. 447 – 454. DOI: 10.1002/zaac.201600449
52. Bangarigadu-Sanasy S., Sankar C. R, Assoud A., Kleinke H. Dalton Trans, 2011, vol. 40, pp. 862 - 867. DOI: 10.1039/c0dt01151g
53. Sankar C. R., Bangarigadu-Sanasy S., Kleinke H. J. Electron. Mater, 2011, vol. 41, pp. 1662-1666. DOI: 10.1007/s11664-011-1846-z
54. Bangarigadu-Sanasy S., Sankar C. R., Schlender P., Kleinke H. J. Alloys Compd., 2013, vol. 549, pp. 126–134. DOI: 10.1016/j.jallcom.2012.09.023
55. Guo Q., Kleinke H. J. Alloys Compd., 2015, vol. 630, pp. 37-42. DOI: 10.1016/j.jallcom.2015.01.025
56. Bangarigadu-Sanasy S., Sankar C. R., Dube P. A., et al. J. Alloys. Compd., 2014, vol. 589, pp. 389–392. DOI: 10.1016/j.jallcom.2013.11.229
57. Kurosaki K., Kosuga A., Goto K., et al. Mater. Trans., 2006. vol. 47, pp. 1938-1940. DOI: 10.2320/matertrans.47.1938
58. Arpino K. E., Wallace D. C., Koohpayeh S. "Am. Phys. Soc. APS March Meeting", Proceedings of the Meeting, March 18-22, 2013, Los Angeles, CA, abstract id. B13.0083.
59. Arpino K. E., Wallace D. C., Nie Y. F., et al. Phys. Rev. Lett., 2014, vol. 112, pp. 017002-5. DOI: 10.1103/PhysRevLett.112.017002
60. Arpino K. E., Wasser B. D., and McQueen T. M. APL Mat., 2015, vol. 3, no. 4, pp. 041507. DOI: 10.1063/1.4913392
61. Niu C., Dai Y., Huang B., et al. "Frühjahrstagung der Deutschen Physikalischen Gesellschaft", 30 Mar 2014 - 4 Apr 2014, Dresden, Germany, [FZJ-2014-01899].
62. Isaeva A., Doert Th., Autes G., Yazyev O. V. "New Trends in Topological Insulators (NTTI2015) ", 6 - 10 July 2015, Donostia-San Sebastian, Spain, p. 93.
63. Wang J., Liu Y., Jin K-H., et al. Topological Dirac-Nodal-Sphere Semimetal. arXiv:1803.05235 [cond-mat.mes-hall].
64. Dughaish Z. H., Mohamed S. H. Indian J. Phys., 2013, vol. 87, no. 8, pp. 741-746. DOI: 10.1007/s12648-013-0308-2
65. Malakhovskay-Rosokha T. A., Filep M. J., Sabov M. Y., Barchiy I. E. J. Mater. Sci.: Mater. Electr, 2013, vol. 24, no. 7, pp. 2410-2413. DOI: 10.1007/s10854-013-1110-9
66. Plucinski K. J., Sabov M., Fedorchuk A. O., et al. Opt. Quant. Electron, 2015, vol. 47, pp. 185-192. DOI: 10.1007/s11082-014-9899-x
67. Barchij I. E., Sabov M., El-Naggar A. M., et al. J. Mater. Sci.: Mater Electron, 2016, vol. 27, pp. 3901-3905. DOI: 10.1007/s10854-015-4240-4
68. Piasecki M., Brik M. G., Kityk I. V., et al. "European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference (Optical Society of America", 25-29 June 2017, Munich, Germany, paper CE_P_6.
69. Piasecki M., Brik M. G., Barchiy I. E., et al. J. Alloys Compd., 2017, vol. 710, pp. 600-607. DOI: 10.1016/j.jallcom.2017.03.280
70. Reshak A. H., Alahmed Z. A., Barchij I. E., et al. RSC Adv., 2015, vol. 5, pp. 102173-102181. DOI: 10.1039/c5ra20956k
71. Böttcher P., Doert Th., Druska Ch., Brandmöller S. J. Alloys Compd., 1997, vol. 246, pp. 209-215. DOI: 10.1016/s0925-8388(96)02455-3
72. Voroshilov Yu. V., Gurzan M. I., Kish Z. Z., Lada L. V. Inorg. Mater, 1988, vol. 24, no. 9, pp. 1256-1269.
73. Wacker K. Z. Kristallogr. Supplement Issue, 1991, vol. 3, pp. 281.
74. Doert T., Böttcher P. Z. Kristallogr., 1994, vol. 209, p. 95. DOI: 10.1524/zkri.1994.209.1.96
75. Guo L. B., Ye L., Wang Y. X., Yang J. M., Yan Y. L., Ren F. Z. J. Appl. Phys., 2015, vol. 118, pp. 235703-1-235703-6. DOI: 10.1063/1.4938058
76. Imamalieva S. Z., Sadygov F. M., and Babanly M. B. Inorg. Mater., 2008, vol. 44, no. 9, pp. 935–938. DOI: 10.1134/s0020168508090070
77. Babanly M. B., Imamalieva S. Z., Babanly D. M., and Sadygov F. M. Azerb. Chem. J, 2009, no. 2, pp. 122–125.
78. Babanly M. B., Imamalieva S. Z., Sadygov F. M. Baku Univ. News. Ser. of Nature Study, 2009, no. 4, pp. 5–10.
79. Babanly M. B., Imamalieva S. Z., Sadygov F. M. Chem. Problems, 2009, no. 1, pp. 171-174.
80. Bradtmöller S., Böttcher P. Z. Anorg. Allg. Chem., 1993, vol. 619, pp. 1155-1160. DOI: 10.1002/zaac.19936190702
81. Bradtmöller S., Böttcher P. Z. Kristallogr., 1994, vol. 209, no. 1, p. 97. DOI: 10.1524/zkri.1994.209.1.97
82. Bradtmöller S., Böttcher P. Z. Kristallogr., 1994, vol. 209, no. 1, p. 75. DOI: 10.1524/zkri.1994.209.1.75.
83. Blachnik R., Dreibach H. A. J. Solid State Chem., 1984, vol. 52, pp. 53-60. DOI: 10.1016/0022-4596(84)90197-x
84. Doert Th, Asmuth R, Böttcher P. J. Alloys Compd., 1994, vol. 290, pp. 151–157. DOI: 10.1016/0925-8388(94)91090-1
85. Babanly D. M., Chiragov M. I., Babanly M. B. Chem. Problems., 2005, no. 2, pp. 149-151.
86. Babanly D. M., Aliev Z. S., Dhafarly F. Ya., Babanly M. B. Russ. J. Inorg. Chem., 2011, vol. 56, no. 3, pp. 442-449. DOI: 10.1134/s0036023611030065
87. Babanly D. M., Babanly M. B. Russ. J. Inorg. Chem., 2010, vol. 55, no. 10, pp. 1620–1629. DOI: 10.1134/s0036023610100219
88. Babanly D. M., Aliev Z. S., Imamaliyeva S. Z., et al. J. Alloys Compd., 2016, vol. 688, pp. 997-1005. DOI: 10.1016/j.jallcom.2016.06.054
89. Barchii I. E., Lazarev V. B., Peresh E. Y., et al. Inorg. Mater., 1988, vol. 24, no. 11, pp. 1791–1795.
90. Bradtmöller S, Kremer R. K., Böttcher P. Z. Anorg. Allg. Chem., 1994, vol. 620, no. 6, pp. 1073-1080. DOI: 10.1002/zaac.19946200621
91. Malakhovska T. O., Sabov M. Yu., Peresh E. Yu., et al. Chem. Met. Alloys, 2009, vol. 2, pp. 15-17.
92. Zlomanov V. P. Russ. J. Inorg. Chem., 2010, vol. 55, no. 11, pp. 1740–1753. DOI: 10.1134/s0036023610110112
93. Afinogenov Yu. P., Goncharov E. G., Semenova G. V., Zlomanov V. P. Fiziko-himicheskij analiz mnogokomponentnyh sistem [Physical and Chemical Analysis of Multicomponent Systems]. Мoscow, MFTIB Publ., 2006, 332 p. (in Russ.)
94. Zlomanov V. P., Khoviv A. M. and Zavrazhnov A. Yu. Physicochemical Analysis and Synthesis of Nonstoichiometric Solids. In: InTech. Materials Science - Advanced Topics 2013, pp. 103-128.
95. Gottstein G. Physical Foundations of Materials Science. Springer, 2004, XIV, 502 p.
96. Bhat H. L. Introduction to Crystal Growth: Principles and Practice. CRC Press, 2014, 346 р.
97. Knotko A. V., Presnyakov I. A., Tretyakov Yu. D. Himiya tverdogo tela [Chemistry of a Solid State]. Moscow, Akademiya Publ., 2006, 310 p. (in Russ.)
98. Imamaliyeva S. Z., Gasanly T. M., Zlomanov V. P., Babanly M. B. Inorg. Mater., 2017, vol. 53, no. 7, pp. 685–689. DOI: 10.1134/s0020168517070093
99. Imamaliyeva S. Z., Sadygov F. M., Babanly M. B. Russ. J. Inorg. Chem., 2018, vol. 63, no.2, pp. 262-269. DOI: 10.1134/s0036023618020079
100. Imamaliyeva S. Z., Mekhdiyeva I. F.,Amiraslanov I. R., Babanlı M. B. J. Phase Equilib., 2017, vol. 38, no. 5, .pp 764–770. DOI: 10.1007/s11669-017-0564-5
101. Imamaliyeva S. Z., Gasymov V. A, Babanlı M. B. The Chemist, 2017, vol. 90, no. 1, pp. 1-6.
102. Imamaliyeva S. Z., Mashadiyeva L. F., Zlomanov V. P., Babanly M. B. Inorg. Mater, 2015, vol. 51, no. 12, pp. 1237-1242. DOI: 10.1134/s0020168515110035
103. Babanly M. B, Tedenac J.-C, Imamalieva S. Z., Guseynov F. N., Dashdieva G. B. J. Alloys Compd., 2010, vol. 491, pp. 230-236. DOI: 10.1016/j.jallcom.2009.08.157
104. Imamaliyeva S. Z., Guseynov F. N., Babanly M. B. Transaction of Azerb. Techn. Univ., 2009, vol. 32, no. 4, pp. 61-64.
105. Imamaliyeva S. Z., Guseynov F. N., Babanly M. B. Chem. Problems, 2008, no. 4, pp. 640-646.
106. Imamaliyeva S. Z., Mekhdiyeva I. F., Gasymov V. A., Babanly M. B. Mater. Res., 2017, vol. 20, no. 4, pp. 1057-1062. DOI: 10.1590/1980-5373-mr-2016-0894
107. Imamaliyeva S. Z., Gasanly T. M., Gasymov V. A., Babanly M. B. Acta Chimica Slovenica, 2017, vol. 64, pp. 221–226. DOI: 10.17344/acsi.2017.3207
108. Imamaliyeva S. Z., Gasanly T. M., Zlomanov V. P., et al. Inorg. Mater., 2017, vol. 53, no. 7, pp. 685–689. DOI: 10.1134/s0020168517070093
109. Imamaliyeva S. Z., Gasanly T. M., Amiraslanov I. R., Babanly M. B. Chem. Chem. Technol., 2017, vol. 11, no. 4, pp. 415-419. DOI: 10.23939/chcht11.04.415
110. Imamaliyeva S. Z., Alakbarzade G. I., Mahmudova M. A., et al. Acta Chem. Slovenica, 2018, vol. 65, no. 2, pp. 365–371. DOI: 10.17344/acsi.2017.4053
111. Imamaliyeva S. Z., Alakbarzade G. I., Gasymov V. A., Babanly M. B. Mater. Res., 2018, vol. 21, no. 4, pp. e20180189. DOI: http://dx.doi.org/10.1590/1980-5373-MR-2018-0189
112. Alakbarzade G. I., Babanly D. M., Imamaliyeva S. Z. Condensed Matter and Interphases, 2017, vol. 19, no. 4, pp. 474–478. Available at: https://journals.vsu.ru/kcmf/article/view/225/5
113. Imamaliyeva S. Z., Gasanly T. M., Gasymov V. A., Babanly M. B. Chem. Problems, 2017, no. 3, pp. 241-247.
114. Voronin G. F. Osnovy termodinamiki [Basics of Thermodynamics]. Moscow, Moscow University Publ. House, 1987, 192 p. (in Russ.)
115. Vasilyev V. P., Minaev V. S., Batyunya L. P. Chalcogenide Letters, 2013, vol. 10, no. 11, pp. 485- 507.
116. Vassiliev V. P., Nikoliskaja A. V., Gerasimov Ya. I. Russ. J. Phys. Chem., 1971, vol. 45, no. 8, pp. 2061-2064.
117. Vasiliev V. P., Nikolskaya A. V., Chernyshev V. V., Gerasimov Ya. I. Inorg. Mater, 1968, vol. 4, no. 7, pp.1040-1047.
118. Database of Thermal Constants of Substances. Digital version, in: V. S. Iorish, V. S. Yungman, (Eds.), 2006. Available at: http://www.chem.msu.ru/cgi-bin/tkv.pl
119. Кubaschewski O., Alcock C. B., Spenser P. J. Materials Thermochemistry. Oxford, Pergamon, 1993, 350 p.
120. Jafarov Ya. I., Imamaliyeva S. Z., Babayev A. K., Babanly M. B. Azerb. Chem. J., 2013, no. 4, pp. 75-79.
121. Babanly M. B., Akhmadyar A., Kuliyev A. A. Russ. J. Phys. Chem., 1985, vol. 59, no. 3, pp. 676-678.
122. Babanly D. M., Mashadiyeva L. F., Zlomanov V. P. Inorg. Materilas, 2014, vol. 50, no. 8, pp. 780-785. DOI: 10.1134/s0020168514080020
123. Babanly D. M. Inorg. Materials, 2011, vol. 47, pp. 583-587. DOI: 10.1134/s002016851106001x
124. Babanly M. B., Yusibov Yu. A. Elektrokhimicheskie metody v termodinamike neorganicheskikh system [Electrochemical Methods in Thermodynamics of Inorganic Systems]. Baku, Elm. Publ., 2011, 306 p.
125. Imamaliyeva S. Z., Babanly D. M., Gasanly T. M., Tagiev D. B., Babanly M. B. Russ. J. Phys. Chem., 2018, vol. 92, no. 11, pp. 2111–2117. DOI: 10.1134/S0036024418110158
126. Babanly N. B., Salimov Z. E., Akhmedov M. M., Babanly M. B. Russ. J. Electrochem., 2012, vol. 48, no. 1, pp. 68–73. DOI: 10.1134/s1023193512010041
127. Babanly D. M., Yusibov Yu. A., Babanly M. B. Russ. J. Inorg. Chem, 2007, vol. 52, no. 5, pp. 761-767. DOI: 10.1134/s0036023607050178
128. Babanly D. M., Yusibov Yu. A., Babanly M. B. Russ. J. Inorg. Chem., 2007, vol. 52, no. 5, pp. 753-760. DOI: 10.1134/s0036023607050166
129. Babanly D. M., Amiraslanov I. R., Shevelkov A. V. Tagiyev D. B. J. Alloys. Compd., 2015, vol. 644, pp. 106-112. DOI: 10.1016/j.jallcom.2015.04.177
130. Babanly D. M., Babanly I. M., Imamalieva S. Z., et al. J. Alloys Compd., 2014, vol. 590, pp. 68-74. DOI: 10.1016/j.jallcom.2013.11.223
131. Alekperova T. M., Amiraslanov I. R., Babanly M. B. Chem. Problems., 2015, no. 4, pp. 376-381.
Published
2018-09-11
How to Cite
Imamaliyeva, S. Z. (2018). PHASE DIAGRAMS IN THE DEVELOPMENT OF THALLIUM-REE TELLURIDES WITH Tl5Te3 STRUCTURE AND MULTICOMPONENT PHASES BASED ON THEM OVERVIEW. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 20(3), 332-347. https://doi.org/10.17308/kcmf.2018.20/570
Section
Статьи