THE EFFECT OF THE DISPERSITY OF SULFOCATION-EXCHANGER OF HETEROGENEOUS MEMBRANES ON THE DEVELOPMENT OF DIFFUSION BOUNDARY LAYERS UNDER INTENSIVE CURRENT MODES

  • Elmara M. Akberova Cand. Sci. (Сhem.), Leading Engineer of the Analytical Chemistry Department, Voronezh State University, Voronezh, Russia; e-mail: elmara_09@inbox.ru
  • Denis V. Kostylev the student of Chemical Faculty, Voronezh State University, Voronezh, Russia
  • Vera I. Vasil’eva Dr. Sci. (Сhem.), Professor of the Analytical Chemistry Department, Voronezh State University, Voronezh, Russia; e-mail: viv155@mail.ru
Keywords: heterogeneous sulfocation-exchange membrane, surface inhomogeneity, diffusion boundary layer, electroconvective instability, overlimiting current regimes.

Abstract

Recently, an idea regarding the surface optimization of ion-exchange membranes, aimed at increasing the overlimiting mass transfer by the development of heteroelectroconvection, has been extensively developed. Therefore, the purpose of the work is to conduct a laser-interferometric study of the effect which sulfocation-exchangers of experimental samples of heterogeneous Ralex CM Pes of varying dispersity have on the thickness of diffusion layers in a solution of the interphase boundary.

Experimental samples of heterogeneous sulfocation-exchange membranes Ralex CM Pes (“MEGA” a.s., Czech Republic) were selected for the study. They were obtained by rolling a homogenized mixture of the milled ion-exchanger of various degrees of dispersity with polyethylene. The volume ratio of cation-exchanger to polyethylene was kept the same. The degree of dispersity of the sulfocation-exchanger varied due to different milling times of 5 to 80 minutes. The experiments were performed in a seven-compartment electrodialysis cell with stable concentration-temperature stratification of the electrodialyzerin in a gravitational field. An interferometric setup was used to visualize the transport processes at the membrane-solution boundary.

A comparative analysis of the effect the electrical and geometric heterogeneity of the surface of the heterogeneous sulfocation-exchanger Ralex CM Pes membranes has on the conditions for the formation and development of diffusion layers under intense current modes was carried out. It was established that an increase in the milling time for the ion-exchanger particles leads to a decrease in the magnitude of the electrical inhomogeneity spacing of the surface and the fraction of macropores. Also, microrelief smoothing takes place. An increase in the time of the ion-exchanger milling from 5 to 80 min results in a 1.5 times decrease of the potential drop of the membrane. At this point the effective thickness of the diffusion layer begins to decrease. The study revealed the tendency of a decrease in the total and effective thickness of the diffusion layer with a decrease in the electrical inhomogeneity spacing of the membrane surface.

ACKNOWLEDGMENTS

The work was supported by the grant of the President of the Russian Federation (grant number MK-925.2018.3).

The authors would like to thank MEGA a.s. (Czech Republic) and its owner Mr. L. Novak for providing experimental samples of the Ralex CM Pes sulfocation-exchange membranes.

The equipment of the Centre for Collective Use of Scientific Equipment of Voronezh State University was used to make microphotographs and AFM images of the membrane surface. URL: http://ckp.vsu.ru.

 

Downloads

Download data is not yet available.

References

1. Peers A. M. Discuss. Faraday Soc., 1956, vol. 21, pp. 124-125. DOI: 10.1039/DF9562100117
2. Newman J., Thomas-Alyea K. E. Electrochemical Systems. New York, John & Sons, 2004, 672 p.
3. Urtenov M. A.-Kh., Kirillova E. V., Seidova N. M., Nikonenko V. V. J. Phys. Chem. B, 2007, vol. 111, no. 51, pp. 14208-14222. DOI: 10.1021/jp073103d
4. Kozmai A. E., Nikonenko V. V., Pismenskaya N. D., Pryakhina O. D., Sistat P., Pourcelly G. Russ. J. Electrochem., 2010, vol. 46, no. 12, pp. 1383-1389. DOI: 10.1134/S1023193510120074
5. Larchet C., Nouri S., Auclair B., Dammak L., Nikonenko V., Adv. Colloid Interface Sci., 2008, vol. 139, pp. 45-61. DOI: 10.1016/j.cis.2008.01.007
6. Sistat P., Kozmai A., Pismenskaya N., Larchet C., Pourcelly G., Nikonenko V. Electrochim. Acta, 2008, vol. 53, no. 22, pp. 6380-6390. DOI: 10.1016/j.electacta.2008.04.041
7. Mareev S. A., Kozmay A. E., Pismenskaya N. D., Nikonenko V. V. Kondensirovannyye sredy i mezhfaznye granitsy [Condensed Matter And Interphases], 2011, vol. 13, no. 2, pp. 172-177. Available at: http://www.kcmf.vsu.ru/resources/t_13_2_2011_009.pdf (in Russ.)
8. Vasil’eva V. I., Shaposhnik V. A., Grigorchuk O. V. Russ. J. Electrochem., 2001, vol. 37, no. 11. pp. 1164-1171. DOI: 10.1023/A:1012763531803
9. Grigorchuk O. V., Vasil’eva V. I., Shaposhnik V. A. Desalination, 2005, vol. 184, pp. 431-438. DOI: 10.1016/j.desal.2005.03.048
10. Shaposhnik V. A., Vasil’eva V. I., Grigorchuk O. V. Russ. J. Electrochem., 2006, vol. 42, no. 11, pp. 1202-1207. DOI: 10.1134/S1023193506110061
11. Vasil'eva V. I. Vestnik VGU, seriya: Khimiya. Biologiya. Farmatsiya [Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy], 2007, no. 1, pp. 359-379. (in Russ.)
12. Urtenov M. K., Uzdenova A. M., Kovalenko A. V., Nikonenko V. V., Pismenskaya N. D., Vasil’eva V. I., Sistat P., Pourcelly G. J. Membr. Sci., 2013, vol. 447, pp. 190-202. DOI: 10.1016/j.memsci.2013.07.033
13. Nikonenko V. V., Vasil'eva V. I., Akberova E. M., Uzdenova A. M., Urtenov M. K., Kovalenko A. V., Pismenskaya N. P., Mareev S. A., Pourcelly G. Adv. Colloid Interface Sci., 2016, vol. 235, pp. 233-246. DOI: 10.1016/j.cis.2016.06.014
14. Pérez-Herranz V., Guiñón J. L., García-Antón J. J. Applied Electrochem, 2000, vol. 30, iss. 7, pp. 809-816. DOI: 10.1023/A:100402242
15. Shahi V. K., Thampy S. K., Rangarajan R. Desalination, 2001, vol. 133, pp. 245-258. DOI: 10.1016/S0011-9164(01)00105-9
16. Vasil’eva V. I., Shaposhnik V. A., Grigorchuk O. V., Malykhin M. D. Russ. J. Electrochem, 2002, vol. 38, no. 8. pp. 846-852. DOI: 10.1023/A:1016809727673
17. Pawlowski S., Sistat Ph., Crespo J. G., Velizarov S. J. Membr. Sci., 2014, vol. 471, pp. 72-83. DOI: 10.1016/j.memsci.2014.07.075
18. Shaposhnik V. A., Vasil'eva V. I., Grigorchuk O. V. Adv. Colloid Interface Sci., 2008, vol. 139, pp. 74-82. DOI: 10.1016/j.cis.2008.01.008
19. Tadimeti J. G. D., Kurian V., Chandra A., Chattopadhyay S. J. Membr. Sci., 2016, vol. 499, pp. 418–428. DOI: 10.1016/j.memsci.2015.11.001
20. Gnusin N. P., Zabolotskiy V. I., Pismenskiy V. F., Litvinov S. P. Zhurn. prikl. khimii [Journal Applied Chemistry], 1979, vol. 52, pp. 1053-1058. (in Russ.)
21. Akberova E. M. Condensed Matter And Interphases, 2017, vol. 19, no. 3, pp. 314-320. Available at: http://www.kcmf.vsu.ru/resources/t_19_3_2017_001.pdf (in Russ.)
22. Berezina N. P., Kononenko N. A., Dvorkina G. A, Shel'deshov N. V. Fiziko-khimicheskiye svoystva ionoobmennykh materialov [Physico-Chemical Properties of Ion-Exchange Materials]. Krasnodar: Izd-vo Kuban. gos. un-ta Publ., 1999, 82 p. (in Russ.)
23. Vasil’eva V. I., Shaposhnik V. A., Grigorchuk O. V., Petrunya I. P. Desalination, 2006, vol. 192, no. 1-3, pp. 408-414. DOI: 10.1016/j.desal.2005.06.055
24. Vasil’eva V., Zhiltsova A., Shaposhnik V., Zabolotsky V., Lebedev K., Malykhin M. “Ion Transport in Organic and Inorganic Membranes”. Proceedings of Intern. Conf., 28 May-2 June, 2012, Krasnodar, 2012, pp. 233-235.
25. Vasil’eva V. I., Akberova E. M., Zabolotskii V. I. Russ. J. Electrochem., 2017, vol. 53, no. 4, pp. 398-410. DOI: 10.1134/S1023193517040127
26. Akberova E. M., Vasil’eva V. I., Malykhin M.D. Condensed Matter and Interphases, 2015, vol. 17, no. 3, pp. 273-280. Available at: http://www.kcmf.vsu.ru/resources/t_17_3_2015_002.pdf (in Russ.)
27. Nikonenko V. V., Mareev S. A., Pis’menskaya N. D., Uzdenova A. M., Kovalenko A. V., Urtenov M. Kh., Pourcelly G. Russ. J. Electrochem., 2017, vol. 53, no. 10, pp. 1122-1144. DOI: 10.1134/S1023193517090099
28. Maletzki F., Rosler H.-W., Staude E. J. J. Membr. Sci., 1992, vol. 71, pp. 105-116. DOI: 10.1016/0376-7388(92)85010-G
29. Pismenskaya N. D., Nikonenko V. V., Belova E. I., Lopatkova G. Yu., Sistat Ph., Pourcelly G., Larshe K. Russ. J. Electrochem., 2007, vol. 43, no. 3, pp. 307-327. DOI: 10.1134/S102319350703010X
30. Vasil’eva V. I., Akberova E. M., Zhiltsova A. V., Chernykh E. I., Sirota E. A., Agapov B. L. J. Surface Investigation. Xray, Synchrotron and Neutron Techniques, 2013, vol. 7, no. 5, pp. 833-840. DOI:10.1134/S1027451013050194
31. Pismenskaya N. D., Akberova E. M., Nebavskaya K. A. Russ. J. Phys. Chem. A, 2014, vol. 88, no. 8, pp. 1293-1299. DOI:10.1134/S0036024414080317
32. Sirota E. A., Kranina N. A., Vasil’eva V. I., Malykhin M. D., Selemenev V. F. Vestnik VGU, seriya: Khimiya. Biologiya. Farmatsiya [Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy], 2011, no. 2, pp. 53-59. Available at: http://www.vestnik.vsu.ru/program/view/view.asp?sec=chembio&year=2011&num=02&f_name=2011-02-08 (in Russ.)
33. Vasil'eva V. I., Zhiltsova A. V., Akberova E. M., Fataeva А. I. Kondensirovannyye sredy i mezhfaznye granitsy [Condensed Matter And Interphases], 2014, vol. 16, no. 3, pp. 257-261. Available at: http://www.kcmf.vsu.ru/resources/t_16_3_2014_003.pdf (in Russ.)
Published
2018-09-11
How to Cite
Akberova, E. M., Kostylev, D. V., & Vasil’eva, V. I. (2018). THE EFFECT OF THE DISPERSITY OF SULFOCATION-EXCHANGER OF HETEROGENEOUS MEMBRANES ON THE DEVELOPMENT OF DIFFUSION BOUNDARY LAYERS UNDER INTENSIVE CURRENT MODES. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 20(3), 354-363. https://doi.org/10.17308/kcmf.2018.20/572
Section
Статьи