MULLITE AND ITS ISOMORPHIC SUBSTITUTION
Abstract
The phase diagram of SiO2-Al2O3 is considered. The paper presents an overview of the methods of synthesising mullite, including the calcining of natural aluminosilicates, the Czochralski process (synthesising mullite from melt), the Verneuil process (synthesising mullite from gel), and the solid state method (synthesising mullite from the mixture of stoichiometric composition). Previous studies have determined that the parameters of the orthorhombic lattice and the habitus of mullite crystals depend directly on the ratio of aluminum and silicon in the initial batch, the content of impurities, the method of heat treatment, and the form of introduction of the initial components into the batch. The size of the mullite crystals is affected by the presence of aluminum fluoride in the batch, which at a certain ratios allows to obtain the final product in the form of whiskers. The effect of mineralizers on the yield of mullite was considered: alkali metal fluorides reduce the yield, while sulfates and chlorides increase it and also influence the viscosity and structure of the melt. In order to determine the effect, we studied the influence of various additives on the process, structure, and properties of the synthesis. Structural features of the mullite crystal lattice affecting isomorphic substitutions were determined. The paper also considers the possibility of obtaining isomorphically substituted mullite varieties, and presents the optical characteristics of isomorphically substituted mullite containing d-elements.
Downloads
References
2. Aksay I. A., Dabbs D. M., Sarikaya M. J. Amer. Ceram. Soc., 1991, vol. 74, pp. 2345-2357. DOI: https://doi.org/10.1111/j.1151-2916.1991.tb06768.x
3. Yarotskaya E. G., Polyanskiy E. V., Yarotskiy V. G., Golenko V. P. In: Synthesis of Minerals. Alexandrov: VNIISIMS Publ., 2000, vol. 2, pp. 142-178. (in Russ.)
4. Scneider H., Komarneri S. Mullite. Weinheim: WILEY-VCH, 2005, 487 p.
5. Scneider H., Fischer R.X., Screuer J. J. Amer. Ceram. Soc., 2015, vol. 98, pp. 2948-2967. DOI: https://doi.org/10.1111/jace.13817
6. Matveeva F. A. In: Physico-Chemical Study of Aluminosilicate and Zirconium-Containing Systems and Minerals. Novosibirsk Publ., 1972, pp. 48-57. (in Russ.)
7. Durovich S., Feidi P. Silicat., 1976, vol. 20, pp. 97-112.
8. Cameron W. E. Amer. Mineralogist, 1977, vol. 62, pp. 747-755.
9. Aksay I. A., Dabbs D. M., Sarikaya M. J. Amer. Ceram. Soc., 1991, vol. 74, no. 10, pp. 2343-2357. DOI: https://doi.org/10.1111/j.1151-2916.1991.tb06768.x
10. Padlewski S., Heine V., Price G. D. J. Phys.: Condens. Matter, 1993, vol. 5, pp. 3417-3430. DOI: https://doi.org/10.1088/0953-8984/5/21/004
11. Andreev V. A. Fluoroammonium Technology of Mullite Production from Topaz Concentrate. Thesis Ph.D., Tomsk, 2007, 22 p. (in Russ.)
12. Mailliart O., Chaumat V., Hodaj F. J. Mater.Sci., vol. 45, 2010, pp. 2126-2132. DOI: https://doi.org/10.1007/s10853-009-3950-5
13. Grohol D., Han C., Pyzik A., et al. J. Amer. Ceram. Soc., 2010, vol. 93, pp. 3600-3603. DOI: https://doi.org/10.1111/j.1551-2916.2010.04129.x
14. Hoo C. M., Men D., Taherabadi L. and Mecartneyw M. L. J. Amer. Ceram. Soc., 2011, vol. 94, pp. 2171-2180. DOI: https://doi.org/10.1111/j.1551-2916.2010.04348.x
15. Bodhak S., Bose S. and Bandyopadhyayw A. J. Mater. Sci., 2011, vol. 94, pp. 32-41. DOI: https://doi.org/10.1111/j.1551-2916.2010.04062.x
16. Popa C., Okayasu Y., Katsumata K., et al. J. Mater. Sci., 2011, vol. 48, no. 2, pp. 941-947. DOI: https://doi.org/10.1007/s10853-012-6819-y
17. Lambotte G., Chartrand P. J. Amer. Ceram. Soc., 2011, vol. 94, pp. 4000-4008. DOI: https://doi.org/10.1111/j.1551-2916.2011.04656.x
18. Kalita P., Scneider H., Lipinska K., et. al. J. Amer. Ceram. Soc., 2013, vol. 96, no. 5, pp. 1635-1642. DOI: https://doi.org/10.1111/jace.12191
19. Ingemarsson L., Hellstrom K., Canovic S., et. al. J. Mater. Sci., 2013, vol. 48, pp. 1511–1523. DOI: https://doi.org/10.1007/s10853-012-6906-0
20. Chen M., Zhao B. J. Amer. Ceram. Soc., 2013, vol. 96, pp. 3631-3636. DOI: https://doi.org/10.1111/jace.12573
21. Belyakov A. V., Popova N. A., Grinberg E.E., Strelўnikova I. E., Amelina A. E., Levin Yu. I. Perspektivnye Materialy, 2014, no. 12, pp. 66-73. (in Russ.)
22. Yu P.-C., Tsan Y.-W., Yen F.-S., et. al. J. Amer. Ceram. Soc., 2014, vol. 97, pp. 2431-2438. DOI: https://doi.org/10.1111/jace.12989
23. Malki M., Hoo C. M., Mecartney M. L., Schneider H. J. Amer. Ceram. Soc., 2014, vol. 97, pp. 1923-1930. DOI: https://doi.org/10.1111/jace.12867
24. Kalita P., Cornelius A., Lipinska K., et. al. J. Amer. Ceram. Soc., 2014, vol. 97, pp. 2980-2989. DOI: https://doi.org/10.1111/jace.13027
25. Mandic V., Tkal E., Kurajica S. J. Amer. Ceram. Soc., 2014, vol. 97, pp. 2264-2271. DOI: https://doi.org/10.1111/jace.12887
26. Vakalova T. V., Khabas T. A., Pogrebenkov V. M., Birukova A. A. Mezhdunarodnyi Journal prikladnyh I fundamental’nyh issledovanii [International Journal of Applied and Basic Research], 2015, no. 5, pp. 379-384. (in Russ.)
27. Strelnikova S. S., Andrianov N. T., Anokhin A. S. Trudy Kol’skogo nauchnogo centra RAN [Works of the Kola Scientific Center of the Russian Academy of Sciences], 2015, pp. 479-482. (in Russ.)
28. Richards B., Begley M. R., Wadley H. N. G. J. Amer. Ceram. Soc., 2015, vol. 98, pp. 4066-4075. DOI: https://doi.org/10.1111/jace.13792
29. Chen Z., Gu Y., Kornev K., et. al. J. Amer. Ceram. Soc., 2016, vol. 99, pp. 1504-1511. DOI: https://doi.org/10.1111/jace.14148
30. Zeng D.-J., Zhang Y.-M, Yang J.-F., Wang B., Matsushita J. J. Amer. Ceram. Soc., 2016, vol. 99, pp. 2226-2228. DOI: https://doi.org/10.1111/jace.14309
31. Kocjan A., Ce M., Vengust D., et. al. J. Amer. Ceram. Soc., 2016, vol. 99, pp. 3090-3096. DOI: https://doi.org/10.1111/jace.14302
32. Pimkov Yu. V. Synthesis of Mullite From Activated Precursors and Composite Materials Based on It. Thesis Ph.D., 2016, Ivanovo Publ., 16 p. (in Russi.)
33. Kitaoka S., Matsudaira1 T., Yokoe D., et. al. J. Amer. Ceram. Soc., 2017, vol. 100, pp. 3217-3226. DOI: https://doi.org/10.1111/jace.14834
34. Igami Y., Ohi S., Miyake A. J. Amer. Ceram. Soc., 2017, vol. 100, pp. 4928-4937. DOI: https://doi.org/10.1111/jace.15020
35. Murshed M. M., Sehovi M., Fischer M., et. al. J. Amer. Ceram. Soc., 2017, vol. 100, pp. 5259-5273. DOI: https://doi.org/10.1111/jace.15028
36. Romero A. R., Elsayed H., Bernardo E. J. Amer. Ceram. Soc., 2018, vol. 101, pp. 1036-1041. DOI: https://doi.org/10.1111/jace.15327
37. Krenzel T., Schreuer J., Laubner D., et. al. J. Amer. Ceram. Soc., 2018. DOI: https://doi.org/10.1111/jace.15925
38. Song X., Ma Y., Wang J., et. al. J. Mater. Sci., 2018, pp. 14871–14883. DOI: https://doi.org/10.1007/s10853-018-2667-8
39. Almeida R., Bergmuller E., Luhrs H. et. al. J. Amer. Ceram. Soc., 2018, vol. 100, pp. 4101-4109. DOI: https://doi.org/10.1111/jace.14922
40. Dong X., Liu J., Li X., et. al. J. Amer. Ceram. Soc., 2018, vol. 100, pp. 3425-3433. DOI: https://doi.org/10.1111/jace.14917
41. Zang W., Jia T., Dong X., et. al. J. Amer. Ceram. Soc., 2018, vol. 101, pp. 3138-3147. DOI: https://doi.org/10.1111/jace.15441
42. Penkalia T. Essays on Crystal Chemistry. Leningrad, Khimiya Publ., 1974, 496 с. (in Russ.)
43. Fedorov P. P. Russ. J. Phys. Chem., 1999, vol. 73, no. 9, pp. 1387-1392. (in Russ.)
44. Fedorov P. P. Russ. J. Inorg. Chem., 2012. vol. 57, no. 7, pp. 959-969. DOI: https://doi.org/10.1134/S003602361207011X
45. Yarotskaya E. G., Fedorov P. P. Condensed Matter and Interphases, 2018, vol. 20, no. 3 pp. 348-353. DOI: https://doi.org/10.17308/kcmf.2018.20/571 (in Russ.)