OBTAINING AND INVESTIGATIONS OF COMPOSITION AND THERMOELECTRIC PROPERTIES OF TERNARY SOLID SOLUTIONS (BiXSb1-X)2Te3
Abstract
The purpose of this papers is to show the possibility of polycrystal thermoelectric material
growing in the same cycle as a result of combining the operations of synthesis and fusion zone
recrystallization without loss of thermoelectric quality factor. That end the low-temperature
thermoelectric materials (BixSb1-x)2Te3 were obtained in plant and laboratory conditions. Determination
of composition and unit cell parameters by XRD methods showed that obtained materials are
substitutional solid solutions. Obtained results shows that substitution of antimony by bismuth in
the metal sublattice Sb2Te3 changes the parameter a of the hexagonal unit cell, whereas the parameter
c remains unchanged practically. The atomic composition of laboratory and plant samples (BixSb1-x)
2Te3 determined by the a parameter values in accordance with Vegard’s law. Thermoelectric quality
factor Z for obtained materials was determined by measuring three electrophysical values: the
coefficient of thermal emf, electrical resistivity and thermal conductivity.
Conclusions: The possibility of growing experimental samples in one cycle of the fusion of the
charge calculated composition with an acceptable value of the quality factor ~ 2.5 • 10–3 K –1, is
practically identical with that of samples obtained in a plants as a result of successive operations of
synthesis, cleavage and zone recrystallization.
Downloads
References
2. Abrikosov N. H., Shalimova L. E. Semiconductor materials based on compounds AIVBVI. Moscow, Nauka Publ., 1975, 198 p.
3. Liakishev N. O. Bannykh O. A., Rokhlin L. L. Diagrams of binary metallic systems, vol. 1. Moscow, Engineering Publ., 1996, 992 p.
4. Ivanov L. D., Granatkin J. V., Sidorenko N. A. «Thermoelectrics and their application», Reports VII Interstate seminar, november, Saint Petersburg, 2000, pp. 6—11.
5. Gasenkova I. V., Svechnikova T. E. «Thermoelectrics and their application», Reports VIII Interstate seminar, november, Saint Petersburg, 2002, pp. 145—150.
6. Korzhuev M. A. «Thermoelectrics and their application », Reports VIII Interstate seminar, november, Saint Petersburg, 2002, pp. 139—144.
7. JCPDS — International Centre for Diffraction Data. 2001, vol. 22.
8. Jeon H. — W., H H. — Pa, Hyun D. — B, Shim J. — D. J. Phys. Chem., 1991, vol. 9, p. 1213.
9. Markov O. I. Avtoreferat of diss. dr. phys. and math. nauk. Kursk, 2012.
10. Kulbachinskii V. A., Kytin V. G., Tarasov P. M., Yuzeev N. A. Physics of Solid State, 2010, vol. 52, no. 9, p. 1707.
11. Kutasov V. A., Lukyanov L. N. Physics of Solid State, 2006, vol. 48, no. 12, p. 2164.
12. Cho S., Kim Y., Ketterson J. B. Appl. Phys. A, 2004, vol. 79, p. 1729.
13. Bourgault D., Giroud C., Caillautl N., Carbone L., Aymami J. A. Thin Solid Films, 2008, vol. 516, p. 8579.
14. Vegard L. Zeitschrift für Physik, 1921, z. 17.
15. Denton A. R. and Ashcroft N. W. Phys. Rev. A, 1991, vol. 43, p. 3164.
16. Patrushev T. N., Podorozhnyak S. A., Shelovanova G. N. J. of Siberian Federal Universyity Engineering and Technologies, 2013, vol. 6, p. 657.
17. Bogomolov D. I. Avtoreferat of diss. cand. tekh. nauk. Moscow, 2013, 23 p.