THERMAL DISSIPATIVE STRUCTURES IN THE CASE OF CARBON NANOTUBES AGGREGATION IN DRYING DROPS
Abstract
The urgent problem of condensed matter physics is study interrelation of the formation
process and properties of the self-organized structures. The main goal of this paper is studying nonlinear
dynamic processes of the aggregation of short carbon nanotubes in drying drops. The autowave
process is a generic type of the dynamically ordered structures, which are typical for the physical,
chemical, biological and medical systems. At recent time, the water drops are used as a reactor with
distributed active medium. Taking into account the dynamic conditions of the drying droplet, the
capillary flows, the increasing concentration of the components — «Droplet reactor» is of great interest
in the self-assembly and self-organization of nanoparticles.
The colloidal suspension of the short carbon nanotubes in distilled water was used as the active
medium. The dynamic of the thermophysical properties of aggregation process and morphology was
investigated In situ. The phenomenon of formation of the thermal autowave spatio-temporal structures
was observed. According to its distinctive features (disequilibrium, nonlinearity, spontaneity, openness)
the autowave process of aggregation of nanotubes refers to the dissipative structure with the
increasing amplitude of temperature fluctuations. As a result of the aggregation the fractal structures
are formed.
Autowave processes are the thermodynamic characteristics of self-organization. Thus, it can be used
for diagnosis in the synthesis of functional materials for various purposes.
Downloads
References
2. Kushnir S. E., Kazin P. E., Trusov L. A., Tret’yakov Yu.D. Uspekhi khimii, 2012, vol. 81, no. 6, pp. 739—760.
3. Lebedev-Stepanov P.V., Kadushnikov R. M., Molchanov S. P., Ivanov A. A., Mitrokhin V. P., Vlasov K. O., Rubin N. I., Yurasik G. A., Nazarov V. G., Alfimov M. V. Rossiiskie nanotekhnologii, 2013, vol. 8, no. 3—4, pp. 5—23.
4. D’yachkov P. N. Elektronnye svoistva i primenenie nanotrubok. Moscow. Binom Publ., 2011. 488 p.
5. Shokrieh M. M., Rafiee R. Mechanics of Composite Materials, 2010, vol. 46, no. 2, pp. 155—172.
6. Li L., Yang Y., Yang G., Chen X., Hsiao B. S., Chu B., Spanier J. E., Li C. Y. NanoLett, 2006, vol. 6, no. 5, pp. 1007—1012.
7. Nikolis G., Prigozhin I. Samoorganizatsiya v neravnovesnykh protsessakh. Ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii. Moscow. Mir Publ., 1977, 512 p.
8. Vasil’ev V.A., Romanovskii Yu.M., Yakhno V. G. Avtovolnovye protsessy. Moscow. Nauka Publ., 1987. 240 p.
9. Kurkina E. S., Kurdyumov S. P. Doklady akademii nauk, 2004, vol. 395, no. 6, pp. 743—748.
10. Verveiko D. V., Veresokin A. Yu. Uchenye zapiski. Elektronnyi zhurnal Kurskogo gosudarstvennogo universiteta, 2009, no. 3, pp. 6—13.
11. Yakhno T. A., Kazakov V. V., Sanina O. A., Sanin A. G., Yakhno V. G. ZhTF, 2010, vol. 80, no. 7, pp. 17—23.
12. Su B., Wang S., Song Y., Jiang L. Nano Research, 2011, vol. 4, no. 3, pp. 266—273.
13. Zhukalin D. A., Tuchin A. V., Avilov S. V., Bityutskaya L. A., Bormontov E. N. Recent Adv. In Biomedical & Chem. Eng. and Mat. Sc., 2014, vol. 1. pp. 79—81.
14. Zhukalin D. A., Tuchin A. V., Kulikov D. G., Yatsenko A. A., Bityutskaya L. A., Lukin A. N. Kondensirovannye sredy i mezhfaznye granitsy, 2014, vol. 16, no. 1, pp. 23—26.
15. Zhukalin D. A., Tuchin A. V., Bityutskaya L. A., Bormontov E. N. Vestnik VGU. Seriya: Fizika. Matematika, 2014, no. 3, pp. 5—19.
16. Bunkin F. V., Kirichenko N. A., Luk’yanchuk B.S. UFN, 1982, vol. 138, no.1, pp. 45—94.