COLD FUSION OF SILICON CARBIDE IN SiO2-CNT COLLOIDAL NANOSYSTEM

  • Dmitry A. Zhukalin
  • Andrey V. Tuchin
  • Dmitry L. Goloshchapov
  • Larisa A. Bityutskaya
  • Frank Roessner
Keywords: nanosystem, carbon nanotubes, silicon dioxide, electronic structure, density functional theory, charge, interface, nanocomposite, silicon carbide.

Abstract

Mechanisms and conditions of the formation of self-organized structures in colloid nanosystem
aerosil — carbon nanotubes (SiO2-CNT) were studied using numerical and natural experiments.
Within the framework of cap/body CNT model we identified two mechanism of interaction of CNT
with SiO2: covalent and Van-der-Waals. Covalent interactions resulted in the formation of self-organized
stem structures with diameter 250—300 nm and length ~4 μm; van-der-Waals interactions
resulted in the formation of spherical agregates with the diameter ~2 μm. X-ray diffraction analysis
of the obtained nanostructures revealed formation of the silicon carbide phase at room temperature.

Downloads

Download data is not yet available.

Author Biographies

Dmitry A. Zhukalin

post graduate student, Department
of Physics of Semiconductors and Microelectronics,
Voronezh State University; ph.: +7 (951) 5685250, e-mail:
d.zhukalin@mail.ru

Andrey V. Tuchin

post graduate student, Department
of Physics of Semiconductors and Microelectronics, Voronezh
State University; ph.: +7 (908) 1485775, e-mail: a.tuchin@bk.ru

Dmitry L. Goloshchapov

Cand. Sci. (Phys.-Math.),
Chief Engineer, Senior Researcher, Department of Solid
State Physic and Nanostructures, Voronezh State University;
ph.: +7 (905) 0531234, e-mail: goloshchapovdl@gmail.com

Larisa A. Bityutskaya

Cand. Sci. (Chem.), Associate
Professor, Department of Physics of Semiconductors and
Microelectronics, Voronezh State University; ph.: +7 (473)2208481, e-mail: me144@phys.vsu.ru

Frank Roessner

Dr. Sci. (Chem.), Professor of Industrial
Chemistry Department, Carl von Ossietzky University
of Oldenburg; ph. +49 (441) 7983355, e-mail: frank.roessner@uni-oldenburg.de

References

1. Walker D. A., Kowalczyk B., Cruz M. O., Grzybowski B. A. Nanoscale, 2011, vol. 3, pp. 1316—1344.
2. Harlamova M. V. Advances in Physical Sciences, 2013, vol. 183, no. 11, pp. 1145—1174.
3. Shokrieh M. M., Rafiee R. Mechanics of Composite Materials, 2010, vol. 46, no. 2, pp. 155—172.
4. D’Yachkov P. N. Electronic properties and application of nanotubes, Moscow: Binom. Laboratory of Knowledge. Publ., 2011, 488 p.
5. Novikov L. S., Voronina E. N., Chirskaya N. P. Journal of Advanced Materials, 2013, no. 11, pp. 12—21.
6. Byrne MT, Gun’ko YK. Advanced Materials, 2010, vol. 22, no. 15, pp. 1672—1688.
7. Bazhenov A. V., Fursova T. N., Turanov A. N., Aronin A. C., Karandashev V. K. Physics of the Solid State, 2014, vol. 56, no. 3, pp. 553—559.
8. Zhukalin D. A., Tuchin A. V., Kulikov D. G., Yatsenko A. A., Bityutskaya L. A., Lukin A. N. Kondensirovannye sredy i mezhfaznye granitsy, 2014, vol. 16, no. 1, pp. 23—26.
9. Bityutskaya L. A., Golovinskiy P. A., Zhukalin D. A., Alekseeva E. V., Avilov S. V., Lukin A. N. Kondensirovannye sredy i mezhfaznye granitsy, 2013, vol. 15,
no. 1, pp. 59—64.
10. Li L. Polymer Crystallization Enabled Carbon Nanotube Functionalization: Morphology, Structure and Applications, Diss. of Doc. of Philosophy, Drexel University, USA, 2006, 181 p.
11. McNally T., Pötschke P. UK, Cambridge: Woodhead Publishing Limited, 2011, 820 p.
12. Miao X., Qi Y., Li X., Wang Y., Li X., Tian F., Li H., Bian F., Wang J., Li X. Adv. Mat. Res., 2013, vol. 652—645, pp. 15—24.
13. Bolotov V. V., Nessov S. N., Koroussenko P. M., Povoroznyuk S. N. Technical Physics. The Russian Journal of Applied Physics, 2014, vol. 56, no. 9, pp. 1834—1838.
14. Cioslowski J., Niny R., Moncrief D. J. Am. Chem. Soc., 2002, vol. 124, pp. 8485—8489.
15. Tuchin A. V., Ganin A. A., Zhukalin D. A., Bitytskaya L. A., Bormontov E. N. Recent Adv. In Biomedical & Chem. Eng. and Mat. Sc., 2014, vol. 1, pp. 40—46.
16. Buonocore F., Trani F., Ninno D., Matteo A. D., Cantele G., Iadonisi G. Nanotech, 2008, vol. 19, pp. 025711(6).
17. Glukhova О. Е. Journal of Nano and Microsystem Technique, 2008, vol. 96, no. 7, pp. 8—12.
18. Bormontov E. N., Ganin A. A. and Bityutskaya L. A. Proceedings of SPIE, 2012, vol. 8700, pp. 870011 (9).
19. Tarasevich Yu.Yu., Pravoslavnova D. M. Technical Physics. The Russian Journal of Applied Physics, 2007, vol. 52, no. 2, pp. 159—163.
20. Bin Su, Shutao Wang, Yanling Song, Lei Jiang Nano Research, 2011, vol. 4, no. 3, pp. 266—273.
21. Zhukalin D. A., Tuchin A. V., Avilov S. V., Bitytskaya L. A., Bormontov E. N. Recent Adv. In Biomedical & Chem. Eng. and Mat. Sc., 2014, vol. 1, pp. 79—81.
22. Yang H., Beavers M., Wang Z., Jiang A., Liu Z., Jin H., Mercado B. Q., Olmstead M. M., Balch A. L. Angew. Chem. Int. Ed., 2009, vol. 48, pp. 1—6.
23. Li Q., Zhu Y. T., Kinloch I. A., Windle A. H. J. Phys. Chem. B, 2006, vol. 110, pp.13926—13930.
24. Chukin G. D. Khimiya poverkhnosti i stroenie dispersnogo kremnezema, Moscow, Paladin Publ., 2008, 172 p.
25. Shamilin S. N., Galakhov V. R., Aksenova V. I., Karpov A. N., Shvarts N. L., Yanovitskaya Z. Sh., Volodin V. A., Antonova I. V., Ezhevskaya T. B., Jedrzejewski J., Savir E., Balberg I. Fizika i tekhnika poluprovodnikov, 2010, vol. 44, no. 4. pp. 550—555.
26. Gritsenko V. A. Uspekhi fizicheskikh nauk, 2009, vol. 179, no. 9, pp. 921—930.
Published
2014-12-25
How to Cite
Zhukalin, D. A., Tuchin, A. V., Goloshchapov, D. L., Bityutskaya, L. A., & Roessner, F. (2014). COLD FUSION OF SILICON CARBIDE IN SiO2-CNT COLLOIDAL NANOSYSTEM. Condensed Matter and Interphases, 16(4), 431-438. Retrieved from https://journals.vsu.ru/kcmf/article/view/857
Section
Статьи

Most read articles by the same author(s)

1 2 3 > >>