• Evelina Pavlovna Domashevskaya
  • Al-Zubaidi Asaad
  • Dmitry L. Goloshchapov
  • Nina A. Rumyantseva
Keywords: hydroxyapatite, Zn-HAP, Cu-HAP, Ca-deficient HAP, nanocrystals, phase composition.


Calcium hydroxyapatite (HAP) Ca10 (PO4) 6 (OH) 2 is an important material, which is
applied in reconstruction of human solid tissue. In medicine, artificial materials based on HAP are
used as ceramics and composites for recovering of bone and teeth, and as implant coatings for better
integration of synthetic materials with hydroxyapatite of human solid tissue.
Phase and elemental composition of HAP samples by XRD and EPMA data has shown that under
certain conditions method of chemical precipitation from solution calcium-deficient hydroxyapatite
CDHAP could be produced with the calcium to phosphorous ratio Ca/P = 1.43.
XRD analysis proved that all of the samples consist of nanocrystals with the average size of ~ 50 nm.
The obtained data show that the calcium deficiency in the crystal lattice of HAP is kept when calcium
atoms are substituted by of Zn and Cu atoms.
Partial substitution of calcium by Zn and Cu atoms of the radii less then calcium radius leads to the
decrease of HAP cell unit parameters and reducing of nanocrystals average size


Download data is not yet available.

Author Biographies

Evelina Pavlovna Domashevskaya

Dr. Sci. (Phys.-Math.), Professor, Head of the Department of Solid State Physic and Nanostructures, Voronezh State University; e-mail:

Al-Zubaidi Asaad

postgraduate student, Department of Solid State Physic and Nanostructures, Voronezh State University

Dmitry L. Goloshchapov

Cand. Sci. (Phys.-Math.), Chief Engineer, Department of Solid State Physic and Nanostructures, Voronezh State University

Nina A. Rumyantseva

Engineer, Department of Solid State Physic and Nanostructures, Voronezh State University


1. Berzina C. L., Borodajenko N. // J.: Infrared Spectroscopy — Materials Science, Engineering and Technology. 2012. P. 123—148.
2. Данильченко С. Н. // Вестник СумГУ. Серия физическая. 2007. № 2. C. 94—100.
3. Devanand V. G., Ramasamy S. // Biotech. 2013. V. 3. P. 173—186.
4. El Mhammedi M. A., Achak M., Massa H. // J. Coat. Technol. Res. 2010. V. 7. I.6. P. 715—720.
5. Gross K. A., Komarovska L., Viksna A. // The Australian Ceramic Society. 2013. V. 49. I. 2. P. 129—135.
6. Kashkarov V. M., Goloshapov D. L., Rumyantseva A. N., Seredin P. V., et. al. // J. of Surface Investigation. X- ray, Synchrotron and Neutron Techniques. 2011. V. 5. I. 6. P. 1162—1167.
7. Li C., Liang J., Niu J., Liu S., et al. // Electron Microscop. 2011. V. 60. P. 301—305.
8. Norhidayu D., Sopyan I., Ramesh S. // J. Am. Ceram. Soc. 2008. V. 89. I. 9. P. 257—270.
9. Riad M., Mikhail S. // Researches in Engineering. 2010. V. 10. I. 1. P. 85—91.
10. Siddharthan A., Seshadri S. K. and Sampath Kumar T. S. // Trends Biomater. 2005. V. 18. I. 2. P. 110—112.
11. Tamai M, Nakamura M., et. al. // J. of Materials Science: Materials in Medicine. 2003. V. 14. № 7. P. 617—622.
12. Thian E. S., Konishi T., Kawanobe Y. // Mater Sci: Mater Med. 2013. V. 24. P. 437—445.
13. Yang Hui, Xiao Bingjuan, Xu Ke-Wei // Mater Sci: Mater Med. 2009. V. 20. I. 3. P. 785—792.
How to Cite
Domashevskaya, E. P., Asaad, A.-Z., Goloshchapov, D. L., & Rumyantseva, N. A. (2014). STUDY OF METAL SUBSTITUTED CALCIUM DEFICIENT HYDROXYAPATITE. Condensed Matter and Interphases, 16(2), 134-141. Retrieved from

Most read articles by the same author(s)