HARDNESS HIGHLY DISPERSED FILMS GETEROSITEMY Ag-Cu

  • Sergey B. Kushev
  • Maxim A. Bosikh
  • Alexandr V. Kostuchenko
  • Sergey A. Soldatenko
  • Maria S. Volodina
  • Konstantin S. Soloviev
Keywords: film, composite, silver, copper, surface morphology, nanoindentation hardness.

Abstract

The films obtained during vacuum condensation Ag and Cu on the surface of the substrate
have a nanocrystalline structure induced by the formation of phases in the solid solution of Ag and
Cu in the Ag Cu, and their hardness in a broad range of component concentrations exceed the calculated
value. Currently, there is no unambiguous interpretation of abnormal hardness of nanocrystalline
films of Ag-Cu, and no clear mechanism of hardening. Therefore, the aim of the present work —
a comparative evaluation of the hardness of nanocrystalline Ag-Cu films and determination of the
causes of high hardness film composites Ag-Cu. Films Ag, Cu and Cu-Ag with thickness 1.0—1.5 micrometers
was prepared by thermal evaporation and condensation under vacuum of 5·10–4 Pa corresponding
metals from one or two sources on the surface is thermally oxidized wafer (111) Si with an
oxide layer thickness about 0.5 microns at a temperature of the substrate TS = 300 and 570 K and
a condensation rate of about 30 nm / sec. Surface morphology of the films was investigated by AFM,
mechanical properties was investigated by the method of nanoindentation with a maximum load of
5 mN and 10 mN.
Analysis of the nanoindenter fingerprint and film structure Ag, Cu and Cu-Ag condensed at TA = 300 К
showed that the difference in the mechanisms of plastic deformation associated with the dispersion
structure, reflected on the surface morphology in an indentation. In the case of the dislocation mechanism
of action observed sheet output of the film material at the edge of the indenter and the result
is a compact hillock on the edge of the print. With decreasing grain size becomes the main mechanism
of deformation process of grain boundary sliding. In this case, the indentation results in the spread
of mechanical stress over a considerable portion from the edge of the indenter and the resulting spread
of the hillock is formed larger and the maximum height thereof smaller. Nanoindentation data show
that film hardness Ag-Cu, condensed with TA = 300 K greater than the hardness value as a single-phase
films and film composite Ag-Cu, obtained by TA = 570 K.
According to the results of nanoindentation are constructed curves H / Er from hs/hc and then determine
the maximum hardness (Hmax) of the film heterostructures system Ag-Cu in different structural
states: for amorphous-nanocrystalline Hmax = 17 GPa for submicrocrystalline Hmax = 20 GPa. Thus,
it is shown that the equivalent thermal condensation modes film composite Ag-Cu thickness of about
1 micron, the resulting co-sputtering of metal, has a higher hardness than the film of Ag and Cu.
Increased hardness heterophase film composite Ag-Cu as compared with single-phase films of metals
is due to its amorphous-nanocrystalline structure. AFM study of the surface morphology of the
films Ag, Cu and Ag-Cu composite in the indenter and the film structure allowed us to conclude about
the change of the mechanism of plastic deformation in the changes of dispersion of metal films.
The results are of interest in the VLSI technology in creating systems metallization interconnect
electromigration resistant, as well as in numerous applications (fine coating, wear resistance electrical
contacts, etc.).

Downloads

Download data is not yet available.

Author Biographies

Sergey B. Kushev

Dr. Sci. (Phys.-Math.), Full
Professor, Voronezh State Technical University; ph.: (473)
2467633, e-mail: kushev_sb@mail.ru

Maxim A. Bosikh

Engineer, Voronezh State Technical
University; ph.: (+7 (473) 2467633, e-mail: makcbosikh@list.ru

Alexandr V. Kostuchenko

PhD, Voronezh State
Technical University; ph.: +7 (473) 2467633, e-mail: avkostuchenko@mail.ru

Sergey A. Soldatenko

Cand. Sci. (Phys.-Math.),
Associate Professor, Voronezh State Technical University;
ph.: +7 (473) 2467633, e-mail: rnileme@mail.ru

Maria S. Volodina

post-graduate student, Voronezh
State Technical University; ph.: (473) 2467633, e-mail:
rnileme@mail.ru

Konstantin S. Soloviev

Cand. Sci. (Phys.-Math.),
Associate Professor, Air Force Academy named after NE
Zhukovsky and Professor Yuri Gagarin; ph.: +7 (473)
2467633, e-mail: rnileme@mail.ru

References

1. Murray J. L. Metall. Trans. A, 1984, vol. 15, pp. 261—268.
2. Ievlev. V.M., Shvedov E. V., Ampilogov V. P., Merkulov G. V. FMM, 2000, vol. 90, no. 2, pp. 72—76.
3. Dirks A. G., Van den Broek J. J. and Wierenga P. E. J. Appl. Phys., 1984, vol. 55, pp.4248—4256. DOI:10.1063/1.333027.
4. Sheng H. W., Wilde G., Ma E. Acta Mater., 2002, vol. 50, pp.475—488. DOI: 10.1016/S1359—6454(01)00374—3.
5. Chen Hao, Zuo Jian-Min. Acta Materialia, 2007, vol. 55, pp. 1617—1628. DOI: 10.1016/j.actamat.2006.10.036
6. Gohil S., Banerjee R., Bose S., Ayyub P. Scripta Materialia, 2008, vol. 58, pp. 842—845. DOI: 10.1016/j.scriptamat.2007.12.043
7. Bol’shov L.A., Veshchunov M. S. Sov. Phys. JETP 64 (3), September 1986, pp. 635—639.
8. Misják A. F., Barna P. B., Radnóczi G. Materials Science, 2008, vol. 2, pp. 389—390. DOI: 10.1016/j.tsf.2007.07.202
9. Fan Z., Tsakiropoulos P., Miodownik A. P. J. of Materials Science, 1994, vol. 29, pp. 141—150. DOI:10.1007/BF00356585
10. Reshetnyak E. N., Strel’nitskii V. E. Voprosy atomnoi nauki i tekhniki, 2008, no. 2, pp. 119—130.
11. Cao Yifang, Allameh Seyed, Nankivil Derek, Sethiaraj Steve, Otiti Tom, Soboyjo Wole. Materials Science and Engineering A, 2006. vol. 427, pp. 232—240. DOI: 10.1016/j.msea.2006.04.080
12. Bosykh M. A., Kushchev S. B., Antonova M. A., Kannykin S. V., Soldatenko S. A. Lukin O. A. «V Vserossiiskoi konferentsiya po nanomaterialam», Sb. mat., Zvenigorod, 2013, Moscow, IMET RAN, pp. 146—147.
13. Klassen R. J., Diak B. J., Saimoto S. Materials Science and Engineerin, 2004, vol. 387—389, pp. 297—301. DOI: 10.1016/j.msea.2004.02.079
14. Soboyejo W. O. Mechanical Properties of Engineering Materials. Marcel Dekker, New York, NY, 2002, 583 p.
15. Volinsky A. A., Vella J., Adhihetty I. S., Sarihan V., Mercado L., Yeung B. H., Gerberich W. W. Materials Research Society, 2001, vol. 649, pp. 5.3.1—5.3.6. DOI: 10.1557/PROC-649-Q5.3
16. Golovin Yu.I. Nanoindentirovanie i ego vozmozhnosti. Moscow, Mashinostroenie Publ., 2009, 312 p.
17. Firstov S. A., Gorban» V.F., Pechkovskii E. P. Nauka ta іnnovatsіi, 2010, vol. 6, no. 5, pp. 7—18.
18. Glezer A. M. // Ros. khim. zh. (Zh. Ros. khim. obva im. D. I. Mendeleeva), 2002, vol. 46, no. 5. pp. 57—63.
Published
2014-12-25
How to Cite
Kushev, S. B., Bosikh, M. A., Kostuchenko, A. V., Soldatenko, S. A., Volodina, M. S., & Soloviev, K. S. (2014). HARDNESS HIGHLY DISPERSED FILMS GETEROSITEMY Ag-Cu. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 16(4), 462-469. Retrieved from https://journals.vsu.ru/kcmf/article/view/861
Section
Статьи

Most read articles by the same author(s)