Influence of magnetron sputtering conditions on the structure and surface morphology of InxGa1–xAs thin films on a GaAs (100) substrate
Abstract
We present the results of the study of the structure and surface morphology of InxGa1–xAs thin films on a GaAs substrate. Thin films were obtained by magnetron sputtering from a specially formed In0.45Ga0.55As target in an argon atmosphere.
The obtained samples of thin films were studied by Raman scattering, atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. It was shown that the grains of the films obtained at a substrate temperature below 600 °C were not faceted and were formed through the coalescence of grains with a size of 30–65 nm. At a substrate temperature of 600 °C, films consisted of submicron grains with a visible faceting.
It was determined that the average grain size increased and the root-mean-square roughness of thin films decreased due to an increase in the substrate temperature. Thin films obtained at a substrate temperature of 600 °C possessed the best structural properties
Downloads
References
Wang W., Ma B., Chao Gao H., Long Yu H., Hui Li Z. Low surface roughness GaAs/Si thin-film deposition using three-step growth method in MBE. Materials Science Forum. 2020;1014(43): 43–51. https://doi.org/10.4028/www.scientific.net/MSF.1014.43
Devitsky O. V., Nikulin D. A., Sysoev I. A. Pulsed laser deposition of aluminum nitride thin films onto sapphire substrates. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2020;20(2): 177–184. https://doi.org/10.17586/2226-1494-2020-20-2–177-184
Lunin L. S., Devitskii O. V., Sysoev I. A., Pashchenko A. S., Kas’yanov I. V., Nikulin D. A., Irkha V. A. Ion-beam seposition of thin AlN films on Al2O3 substrate. Technical Physics Letters. 2019;45(24): 1237. https://doi.org/10.1134/S106378501912023X
Zhu H., Chen Y., Zhao Y., Li X., Teng Y., Hao X., Liu J., Zhu H., Wu Q., Huang Y., Huang Y. Growth and characterization of InGaAs/InAsSb superlattices by metal-organic chemical vapor deposition for midwavelength infrared photodetectors. Superlattices and Microstructures. 2020;146: 106655. https://doi.org/10.1016/j.spmi.2020.106655
Pashchenko A. S., Devitsky O. V., Lunin L. S., Kasyanov I. V., Nikulin D. A., Pashchenko O. S. Structure and forphology of GaInAsP solid solutions on GaAs substrates grown by pulsed laser deposition. Thin Solid Films. 2022;743 139064. https://doi.org/10.1016/j.tsf.2021.139064
Bernal-Correaa R., Gallardo-Hernández S., Cardona-Bedoyac J., Pulzara-Mora A. Structural and optical characterization of GaAs and InGaAs thin films deposited by RF magnetron sputtering. Optik. 2017;145: 608–616. https://doi.org/10.1016/j.ijleo.2017.08.042
Zelaya-Angel O., Jiménez-Sandoval S., Alvarez-Fregoso O. , Mendoza-Alvarez J.G. , Gómez-Herrera1 M.L., Cardona-Bedoya J., Huerta-Ruelas J. Rhombohedral symmetry in GaAs1–xNx nanostructures. Semiconductor Science and Technology. 2021;36(4): 045026. https://doi.org/10.1088/1361-6641/abe319
Mantarcı A. Comparison of optical, electrical, and surface characteristics of InGaN thin flms at non‑fow and small nitrogen fow cases. Optical and Quantum Electronics. 2021;53:544. https://doi.org/10.1007/s11082-021-03203-4
Nishimoto N., Fujihara J. Characterization of GaSb thin films with excess Ga grown by RF magnetron sputtering. International Journal of Modern Physics B. 2020;34(1020): 2050097. https://doi.org/10.1142/S0217979220500976
Othman N.A., Nayan N., Mustafa M.K., Azman Z., Hasnan M.M.I.M., Bakri A.S., Jaffar S.N., Abu Bakar A.S., Mamat M.H., Mohd Yusop M.Z., Ahmad M.Y. Structural and Morphological Properties of AlGaN Thin Films Prepared by Co-sputtering Technique. In: Proceedings – 2021 IEEE Regional Symposium on Micro and Nanoelectronics. 13th IEEE Regional Symposium on Micro and Nanoelectronics, 2 4 August 2021. Institute of Electrical and Electronics Engineers Inc., 2021. p. 20–23. https://doi.org/10.1109/RSM52397.2021.9511605
Mulcue L.F., de la Cruz W., Saldarriaga W. Efect of flm thickness on morphological, structural and electrical properties of InAlN thin layers grown on glass at room temperature. Applied Physics A. 2021;127: 479. https://doi.org/10.1007/s00339-021-04618-2
Ferhati H., Djeffal F., Bendjerad A., Benhaya A., Saidi A. Perovskite/InGaAs tandem cell exceeding 29% efficiency via optimizing spectral splitter based on RF sputtered ITO/Ag/ITO ultra-thin structure. Physica E: Low-dimensional Systems and Nanostructures. 2021;128: 114618. https://doi.org/10.1016/j.physe.2020.114618
Kao Y. C., Chou H. M., Hsu S. C., Lin A., Lin C. C., Shih Z. H., Chang C. L., Hong H. F., Horng R. H. Performance comparison of III–V//Si and III–V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding. Scientific Reports. 2019;9 4308. https://doi.org/10.1038/s41598-019-40727-y
Bernal-Correa R., Torres-Jaramillo S., Pulzara- Mora C., Montes-Monsalve J., Gallardo-Hernández S., López –López M., Cardona-Bedoya J., Pulzara-Mora A. InxGa1–xAs obtained from independent target via cosputtering
deposition. Journal of Physics: Conference Series. 2017;850: 012013. https://doi.org/10.1088/1742-6596/850/1/012013
Fedorov P. P., Mayakova M. N., Gaynutdinov R. V., Tabachkova N. Yu., Komandin G. A., Baranchikov A. E., Chernova E. V., Kuznetsov S. V., Ivanov V. K., Osiko V. V. Investigation of the deposition of calcium fluoride nanoparticles on the chips of CaF2 single crystals. Condensed Matter and Interphases. 2021;23(4): 607–613. https://doi.org/10.17308/kcmf.2021.23/3681
Colfen H. Nonclassical nucleation and crystallization. Crystals. 2020;10(2): 61. https://doi.org/10.3390/cryst10020061
Loudon R., The Raman effect in crystals. Advances in Physics. 1964;52(13): 423-482. https://doi.org/10.1080/00018736400101051
Greene L. H., Dorsten J. F., Roshchin I. V., Abeyta A. C., Tanzer T. A., Feldmann W. L., Bohn P. W. Optical detection of the superconducting proximity effect: Raman scattering on Nb/InAs. Czechoslovak Journal of Physics Supplement. 1996;46(2): 741. https://doi.org/10.1007/BF02583678
Pulzara-Mora A., Montes-Monsalve J., Bernal-Correa R., Morales-Acevedo A., Gallardo-Hernández S., López-López M. Structural, optical and morphological properties of InxGa1–xAs layers obtained by RF magnetron sputtering. Superficies y Vacío. 2016;29(2) 32–37. Available at: https://superficiesyvacio.smctsm.org.mx/index.php/SyV/article/view/47/31
Kang S., Jeong T. S. Indium composition dependence of Raman spectroscopy and photocurrent of InxGa1–xAs strained layers grown by using MOCVD. Journal of the Korean Physical Society. 2020;76(3): 231. https://doi.org/10.3938/jkps.76.231
Groenen J., Carles R., Landa G. Optical-phonon behavior in Ga1–xInxAs: the role of microscopic strains and ionic plasmon coupling. Physical Review B. 1998;58(16): 10452–10462. https://doi.org/10.1103/physrevb.58.10452
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.