Preparation, luminescence, and application of LiMeBO3 borates, Me = Mg, Ca, Sr, Ba, Zn, Cd. Review
Abstract
The review summarises and analyses data on the preparation, structure, and spectral-luminescent properties of LiMeBO3-based borates, Me = bivalent metal.
These polycrystalline borates are prepared traditionally by solid-phase reactions and self-propagating high-temperature synthesis and its modifications based on a combustion reaction.
Frameworks of lithium borates with alkaline earth metals, zinc, and cadmium are formed from large metal polyhedra between which there are boron-oxygen triangles isolated from each other. Doping with rare-earth and heavy metal ions leads to the formation of solid solutions which normally have defective structures. Doped activator ions often become the main part of the luminescence centre in the phosphor. The luminescent properties of ions of rare-earth elements arise from the possibility of electronic transitions between states within the 4f-configuration. The paper discusses the most likely mechanisms of charge compensation during heterovalent substitution in LiMeBO3 borates (co-doping and formation
of cation vacancies). It is shown that charge compensation during the combined introduction of ions of REEs and alkali metals into the structure has a positive effect on the emission yield. The review considers the results of thermoluminescent, upconversion, and photoluminescent properties and processes and phenomena that cause them. It also explains the mechanism of resonance energy transfer from the sensitiser to the activator using the example of Yb3+→Er3+.
It discusses the possibility of using the considered borates as phosphors that emit green, blue, and red light in white LEDs and as effective materials for personnel neutron dosimetry and the dosimetry of weak ionising radiation
Downloads
References
Nakamura S., Fasol G. The Blue Laser Diode. Berlin: Springer, 1997. p. 343. https://doi.org/10.1007/978-3-662-03462-0
Cho J., Park J. H., Kim J. K., Schubert E. F. White light-emitting diodes: History, progress, and future. Laser & Photonics Reviews. 2017;11(2): 1600147. https://doi.org/10.1002/lpor.201600147
Zheng J., Cheng Q., Wu J., Cui X., Chen R., Chen W., Chen C. A novel single-phase white phosphor: Dy3+, K+ for near-UV white light-emitting diodes. Materials Research Bulletin. 2016;73: 38–47. https://doi.org/10.1016/j.materresbull.2015.08.007
Zhu G., Wang Y., Wang Q., Ding X., Geng W., Shi Y. A novel white emitting phosphor of Dy3+ doped Ca19Mg2(PO4)14 for light-emitting diodes. Journal of Luminescence. 2014;154: 246–250. https://doi.org/10.1016/j.jlumin.2014.04.041
Ji Y., Cao J., Zhu Z., Li J., Wang Y., Tu C. Synthesis and white light emission of Dy3+ ions doped hexagonal structure YAlO3 nanocr ystalline. Journal ofLuminescence. 2012;132: 702–706. https://doi.org/10.1016/j.jlumin.2011.10.019
Bajaj N. S., Omanwar S. K. Combustion synthesis and thermo luminescence in g-irradiated borate phosphors activated with terbium (III). Asian Journal of Chemistry. 2012;24: 5945–5946.
Lephoto M. A., Tshabalala K. G., Motloung S. J., Shaat S. K. K., Ntwaeaborwa O. M. Tunable emission from LiBaBO3: Eu3+; Bi3+ phosphor for solid-state lighting. Journal of Luminescence. 2017;32(6): 1084–1091. https://doi.org/10.1002/bio.3295
Pitale S. S., Nagpure I. M., Kumar V., Ntwaeaborwa O. M., Terblans J. J., Swart H. C. Investigations on the low voltage cathodoluminescence stability and surfacechemical behaviour using Auger and X-ray photoelectron spectroscopy on LiSrBO3:Sm3+phosphor. Materials Research Bulletin. 2011;46: 987–994. https://doi.org/10.1016/j.materresbull.2011.03.022
Raghuvanshi G. S., Bist H. D., Kandpal H. C. Luminescence characteristics of Dy3+ in different host matrices. Journal of Physics and Chemistry of Solids. 1982;43(8): 781–783. https://doi.org/10.1016/0022-3697(82)90246-3
Huy B. T., Quang V. X., Chau H. T. B. Effect of doping on the luminescence properties of Li2B4O7. Journal of Luminescence. 2008;128: 1601–1605. https://doi.org/10.1016/j.jlumin.2008.03.007
Bubnova R., Volkov S., Albert B., Filatov S. Borates-crystal structures of prospective nonlinear optical materials: high anisotropy of the thermal expansion caused by anharmonic atomic vibrations. Crystals. 2017;7: 93. https://doi.org/10.3390/cryst7030093
Li P., Yang Z., Wang Z., Guo Q. Luminescent characteristics of LiCaBO3:Eu3+ phosphor for white light emitting diode. Journal of Rare Earths. 2009; 27(3): 390–393. https://doi.org/10.1016/S1002-0721(08)60257-4
Wang Z., Yang Z., Li P., Guo Q., Yang Y. Luminescence characteristic of LiCaBO3: Tb3+ phosphor for white LEDs. Journal of Rare Earths. 2010;28(1): 30–33. https://doi.org/10.1016/S1002-0721(09)60044-2
Un A. Investigation of dopant effect on some TL dosimeters containing boron. Radiation Physics and Chemistry. 2013;85: 23–35. https://doi.org/10.1016/j.radphyschem.2012.10.016
Omanwar S. K., Koparkar K. A., Virk H. S. Resent advances and opportunites in TLD materials: a review. Defect and Diffusion Forum. 2014;347: 75–110. https://doi.org/10.4028/www.scientific.net/DDF.347.75
Chikte D., Omanwar S. K. Moharil S. V. Luminescence properties of red emitting phosphor NaSrBO3:Eu3+ prepared with novel combustion synthesis method. Journal of Luminescence. 2013;142: 180–183. https://doi.org/10.1016/j.jlumin.2013.03.045
Doull B. A., Oliveira L. C., Wang D. Y, Milliken E. D., Yukiharan E. G. Thermoluminescent properties of lithium borate, magnesium borate and calcium sulfate eveloped for temperature sensing. Journal of Luminescence. 2014;146: 408–417. https://doi.org/10.1016/j.jlumin.2013.10.02218
Verma S., Verma K., … Swart H. C. Recent advances in rare earth doped alkali-alkaline earth borates for state lighting applications. Physica B: Condensed Matter. 2018;535: 106–113. https://doi.org/10.1016/j.physb.2017.06.07319
Lakshmanan A. R. A review on the role of thermoluminescent dosimeters in fast-neutron personnel dosimetry. Nuclear Tracks and Radiation Measurements. 1982;6(2–3): 59–78. https://doi.org/10.1016/0735-245X(82)90030-8
Petrik V. I. Anti-Stokes compounds and materials based on them*. Irkutsk: Oblastnaya tipografiya No 1 Publ., 2012. 400 p. (In Russ.)
Budzanowski M., Bilski P., Olko P., Niewiadomski T., Burgkhardt B., Piesch E. New TL detectors for personal neutron dosimetry. Radiation Protection Dosimetry. 1993;47(1-4): 419–423. https://doi.org/10.1093/rpd/47.1-4. 419
Horowitz Y. S. LiF:Mg,Ti versus LiF:Mg,Cu,P: the competition heats up. Radiation Protection Dosimetry. 993;47(1-4): 135–141. https://doi.org/10.1093/oxfordjournals.rpd.a081718
Lee J. I., Yang J. S., Kim J. L., Pradhan A. S., Lee J. D., Chung K. S., Choe H. S. Dosimetric characteristics of LiF:Mg,Cu,Si thermoluminescent materials. Applied Physics Letters. 2006; 89: 094110. https://doi.org/10.1063/1.234528024
Subanakov A. K., Bazarov B. G., Perevalov A. V., Bazarova Zh. G. Thermoluminescent phosphor synthesis on the basis of MgB4O7:Dy. Advances in Current Natural Sciences. 2016;12(2): 36–41. (In Russ.). Available at: https://natural-sciences.ru/ru/article/view?id=36257
Liang Z., Mo F., Zhang X., Zhoun L. Luminescence of the LiMgBO3:Eu3+, Bi3+ phosphor. Journal of Luminescence. 2014; 151:47–51. http://dx.doi.org/10.1016/j.jlumin.2014.02.001
Wu L., Chen X. L., Tu Q. Y., He M., Zhang Y., Xu Y. P. Phase relations in the system Li2O-MgO-B2O3. Journal of Alloys and Compounds. 2002;33391-2): 154-158. https://doi.org/10.1016/S0925-8388(01)01702-9
Bazarova Zh. G., Nepomnyashchikh A. I., Kozlov A. A., … Kurbatov R. V. Phase equilibria in the Li2O–MgO–B2O3 system. Russian Journal of Inorganic Chemistry. 2007;52: 1971–1973. https://doi.org/10.1134/S003602360712025X
Li P., Wang Z., Yang Z., Guo Q., Fu G. Luminescent characteristics of LiSrBO3:M (M= Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphor for white light-emitting diode. Materials Research Bulletin. 2009;44: 2068–2071. https://doi.org/10.1016/j.materresbull.2009.07.008
Zhang J., Zhang X., Gong M., Shi J., Yu L., Rong C., Lian S. LiSrBO3:Eu2+: A novel broad-band red phosphor under the excitation of a blue light. Materials Letters. 2012;79: 100–102. https://doi.org/10.1016/j.matlet.2012.04.011
Cheng W.-D., Zhang H., Lin Q.-S., Zheng F.-K. Syntheses, crystal and elektronic structures and linear optics of LiMBO3 (M = Sr, Ba) orthoborates. Chemistry of Materials. 2001;13: 1841–1847. https://doi.org/10.1021/cm000808i
Wu L., Chen X. L., Li H., He M., Dai L., Li X. Z., Xu Y. P. Structure determination of a new LiCaBO3. Journal of Solid State Chemistry. 2004;177: 1111–1116. https://doi.org/10.1016/j.jssc.2003.10.018
Cai G. M., Yang M., Liu H. X., Si J. Y., Zhang Y. Q. Single-phased and color tunable LiSrBO3:Dy3+, Tm3+, Eu3+ phosphors for white-light-emitting application. Journal of Luminescence. 2017;187: 211–220. https://doi.org/10.1016/j.jlumin.2017.03.017
Jiang L. H., Zhang Y. L., Li C. Y., Pang R., Hao J. Q., Su Q. Thermoluminescence characteristics of rare-earth-doped LiCaBO3 phosphor. Journal of Luminescence. 2008;128: 1904–1908. https://doi.org/10.1016/j.jlumin.2008.05.017
Li J., Li X., Xing H.-W., Zhang Y.-Z., Yang A.-M., Pan Y.-H., Liu W.-X. Solid state synthesis of LiBaBO3: Ce3+/Mn2+ Phosphor sand tunable luminescence induced by energy transfer from Ce3+ to Mn2+. Journal of Materials Science – Materials in Electronics. 2017;28: 4738–4743. https://doi.org/10.1007/s10854-016-6117-6
Lehmann H.-A., Schadov H. Bildung und darstellung von gemischten monoboraten des typs MeLiBO3, (Me = Co, Zn, Mn). Zeitschrift für Anorganische und Allgemeine Chemie. 1966;348: 42-48. https://doi.org/10.1002/zaac.19663480106
Buludov N. T., Karaev Z. Sh., Abdullaev G. K. LiBO2–CdO system. Russian Journal of Inorganic Chemistry. 1985;30(6): 1523–1526. (In Russ.).
Wei L., Huang Q., Zhou Z., Yin X., Dai G., Liang J. Phase diagram of the LiBO2–CdO system, phase transition, and structure of LiCdBO3. Journal of Solid State Chemistry. 1990; 89(1): 16–22. https://doi.org/10.1016/0022-4596(90)90289-A
Yin X. D., Huang Q. Z., Ye S. S., Lei S. R., Chen C. T. Search for the borate nonlinear optical materials: synthesis of lithium cadmium borate a-LiCdBO3. Acta Chimica Sinica. 1985;43(9): 822–826. Available at: http://sioc-ournal.cn/Jwk_hxxb/EN/Y1985/V43/I9/822
Khamaganova T. N., Khumaeva T. G. Phase Equilibria in the Li2O–CdO–B2O3 system. Russian Journal of Inorganic Chemistry. 2013;58(12): 1571–1575. https://doi.org/10.1134/s0036023614010057
Khamaganova T. N., Khumaeva T. G. Li2O–ZnO–B2O3 system. BSU Bulletin. Chemistry. Physics. 2014;(3): 6–8. (In Russ.). Available at: https://elibrary.ru/item.asp?id=21403564
Khamaganova T. N., Humaeva T. G. Method for producing lithium and zinc borate*. Patent RF No. 2550206. Publ. 2015; Bull. No 13. (In Russ.).
Khamaganova T. N. Synthesis of hightemperature modifications of orthoborates LiMeBO3, Me = Cd, Zn*. In: XVIII Intern. Sci. Pract. Conf. “Kulagin Readings: Technique and Technology of Processes”. Pt 1. Chita: Izdatel’stvo Zabaikal’skogo gosudarstvennogo universiteta Publ.; 2018. p. 145–149. (In Russ.).
Khamaganova T. N. Method for obtaining borate a-LiCdBO3*. Patent RF No. 2729805. Publ. 12.08.2020; Bull. No. 23. (In Russ.).
Chang K.-S. LiZnBO3: crystal structure. Journal of the Korean Chemical Society. 2001;45(3): 251–255.
Chen X., Yang C., Chang X., Zang H., Xiao W. Synthesis and characterization of two alkali – metal zinc borates, a-LiZnBO3 and Li0.48Na0.52ZnBO3. Solid State Sciences. 2009;11: 2086–2092. https://doi.org/10.1016/j.solidstatesciences.2009.08.024
Chen X., Wang K., Chang X., Xiao W. Syntheses and characterization of two alkaline and transition metal orthoborates, LiMBO3 ( M = Zn, Cd). Solid State Sciences. 2016;52: 132–140. http://dx.doi.org/10.1016/j.solidstatesciences.2015.12.014
7. Tsuyumoto I., Kihara A. Synthesis, characterization and charge- discharge properties of layer-structure lithium zinc borate, LiZnBO3. Materials Sciences and Applications. 2013;4: 246–249. https://doi.org/10.4236/msa.2013.44030
Wang H., Wu L., Yi H., Wang B., Wu L., Gua Y., Zhang Y. Abnormal luminescent property of Mn2+ in a-LiZnBO3:Mn2+. Dalton Transactions. 2015; 44: 1427–1434. https://doi.org/10.1039/c4dt02626h
Ragupathi V., Krishnaswamy S., Panigrahi P., Subramaniam G., Nagarajan S. Spherical LiZnBO3: structural, optical and electrochemical properties. Materials Science for Energy Technologies. 2019;2:267–271. https://doi.org/10.1016/j.mset.2018.12.003
Bajoj N. S., Omarwanr S. K. Advances in synthesis and characterization of LiMgBO3: Dy3+. Optik. 2014;125: 4077–4080. https://doi.org/10.1016/j.ijleo.2014.01.110
Prasad K. H., Subramanian S., Sairam T. N., Amarendra G., Srinadhu E. S., Satyanarayana N. Structural, electrical and dielectric properties of nanocrystalline LiMgBO3 particles synthesized by Pechini process. Journal of Alloys and Compounds. 2017;718: 459–470. https://doi.org/10.1016/j.jallcom.2017.05.157
Yerpude M. M., Chopra V., Dhoble N. S., Kadam R. M., Krupski Aleksander R., Dhople S. Y. Luminescence study of LiMgBO3:Dy for g-ray and carbon ion beam exposure. Journal of Luminescence. 2019;34: 933–944. https://doi.org/10.1002/bio.3694
Bajaja N. S., Omanwar S. K. Studies on optical properties of LiCaBO3: Tb3+ phosphor. Indian Journal of Pure & Applied Physics. 2016;54: 458–462.
Merzhanov A. G. Self-propagating hightemperature synthesis. Physical chemistry. Modern problems*. Yearbook. Moscow: Khimiya Publ.; 1983. p. 6–44. (In Russ.)
Itin V.I., Nayborodenko Yu. S. High temperature synthesis of intermetallic connections*. Tomsk: Tomsk University Press Publ., 1989. 214 p. (In Russ.)
Ketsko V. A., Beresnev E. N., Chmyrev V. I., Alikhanyan A. S., Kop’eva M. A., Kuznetsov N. T. Oxide nanopowders and oxidation-reduction reactions in gels*. Moscow: Sputnik+ Publ.; 2011. 92 p. (In Russ.)
Patil K. C. Advanced ceramics: Combustion synthesis and properties. Bulletin of Materials Science. 1993;16(6): 533–541. https://doi.org/10.1007/BF02757654
Thakare D. S., Omanwar S. K., Moharil S. V., Dhopt S. M., MuthalR. M. P. L., Kondawar V. K. Combustion synthesis of borate phosphors. Optical Materials. 2007;29: 1731–1735. https://doi.org/10.1016/j.optmat.2006.09.016
Aruna S. T., Mukasyan A. S. Combustion synthesis and nanomaterials. Current Opinion in Solid State and materials Science. 2008;12(3-4): 44–50. https://doi.org/10.1016/j.cossms.2008.12.002
Bedyal A. K., Kumar V., Prakash R., Ntwaeaborwa O. M., Swart H. C. A near-UV-converted LiMgBO3:Dy3+ nanophosphor: Surface andspectral investigations. Applied Surface Science. 2015;329: 40–46. https://doi.org/10.1016/j.apsusc.2014.12.056
Anishia S. R., Jose M. T., Annalakshmi O., Ponnusamy V., Ramasamy V. Dosimetric properties of rare earth doped LiCaBO3 thermoluminescence phosphors. Journal of Luminescence. 2010;130: 1834–1840. https://doi.org/10.1016/j.jlumin.2010.04.019
Oza A. H., Dhoble N. S., Lochab S. P., Dhoble S. J. Luminescence study of Dy or Ce activated LiCaBO3 phosphor for g-ray and C5+ ion beam irradiation. Journal of Luminescence. 2015;30(7): 967-977. https://doi.org/10.1002/bio.2846
Gorelik V. S., Ivicheva S. N., Kargin Yu. F., Kozulin R. K., Europium superluminescence in optically transparent photonic crystals. Inorganic Materials. 2014;50: 150–157. https://doi.org/10.1134/S0020168514020058
Wu L., Bai Y., … Xu J. Analysis of the structure and abnormal photoluminescence of a red-emitting LiMgBO3:Mn2+ phosphor. Dalton Transactions. 2018;47: 13094–13105. https://doi.org/10.1039/c8dt02450b
Hargunani R. P., Sonekar R. P., Omanwar S. K. Synthesis and photoluminiscence properties of Er3+–Yb3+ co-doped LiMgBO3 Phosphor. International Journal of Current Engineering and Scientific Researgch (IJCESR). 2018;5(1): 218–221.
Kazanskaya E. V., Sandomirsky P. A., Simonov M. A., Belov N.V. Crystal structure of LiCdBO3*. Report Academy of Sciences of the USSR. 1978;238(6): 1340–1343. (In Russ.).
Sokolova E. V., Boronikhin V. A., Simonov M. A. Belov N. V. Crystal structure of the triclinic modification of LiCdBO3*. Report Academy of Sciences of the USSR. 1979;246(5): 1126–1129. (In Russ.).
Bondareva O. S., Simonov M. A., Egorov-Tismenko Yu. K., Belov N. V. Crystal structures of LiZn[BO3] and LiMn[BO3]. Soviet Physics. Crystallography.1978;23(3): 487–491. (In Russ.).
Norrestam R. The crystal structure of monoclinic LiMgBO3. Zeitschrift für Kristallographie. 1989; 187(1-2): 103–110. https://doi.org/10.1524/zkri.1989.187.1-2.103
Blasse G., Grabmaier B. C. A general introduction to luminescent materials. In: Luminescent Materials. Berlin. Heidelberg. Springer-Verlag; 1994. p. 233. https://doi.org/10.1007/978-3-642-79017-1_1
Du F., Nakai Y., Tsuboi T., Huang Y., Seo H. J. Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R = Al, Lu). Journal of Materials Chemistry. 2011; 21: 4669–4678. https://doi.org/10.1039/c0jm03324c
Troup G. J., Advances in Quantum Electronics. J. R. Singer (ed.). New York—London: 1961. p. 85.
Kaminsky A. A. Physics and spectroscopy of crystals*. Moscow: Nauka Publ., 1986. 272 p. (In Russ.).
Sen M., Shukla R., Pathak N., … Tyagi A. K. Development of LiMgBO3:Tb3+ as a new generation material for thermoluminescence based personnel neutron dosimetry. Materials Advances. 2021;2: 3405-3419. https://doi.org/10.1039/d0ma00737d
Das P., Pathak N., Sanyal B., Dash S., Kadam R. M. Exploring Na0.1Sr9.8Eu0.1(PO4)6F2 both as a potential phosphor material and host for radioactive waste immobilization. Journal of Alloys and Compounds. 2019;810: 151906. https://doi.org/10.1016/j.jallcom.2019.151906
Gupta S. K., Pathak N., Kadam R. M. An efficient gel-combustion synthesis of visible light emitting barium zirconate perovskite nanoceramics: probing the photoluminescence of Sm3+ and Eu3+ doped BaZrO3. Journal of Luminescence. 2016;169: 106–114. https://doi.org/10.1016/j.jlumin.2015.08.032
Yukihara E. G., Gaza R., McKeever S. W. S., Soares C. G. Optically stimulated luminescence and thermoluminescence efficiencies forhigh-energy heavy charged particle irradiation in Al2O3:C. Radiation Measurements. 2004;38(1): 59–70. https://doi.org/10.1016/s1350-4487(03)00251-8
Huang D. , Zhou Y. , Xu W. , … Yu J. Photoluminescence properties of M3+ (M3+ = Bi3+, Sm3+) activated Na5Eu(WO4)4 red-emitting phosphors for white LEDs. Journal of Alloys and Compounds. 2013;554: 312–318. https://doi.org/10.1016/j.jallcom.2012.11.172
Bedyal A. K., Kumar V., Ntwaeaborwa O. M.,Swart H. C. Thermoluminescence response of 120 MeVAg9+ and g-ray exposed LiMgBO3:Dy3+ nanophosphorsfor dosimetry. Ceramics International. 2016;42:
–18535. https://doi.org/10.1016/j.ceramint.2016.08.191
Chen R. Glow curves with general order kinetics. Journal of the Electrochemical Society. 1969; 116(9): 1254-1257. https://doi.org/10.1149/1.2412291
Jose M. T., Anishia S. R., Annalakshmi O., Ramasamy V. Determination of thermoluminescence kinetic parameters of thulium doped lithium calcium borate. Radiation Measurements. 2011;46: 1026–1032. https://doi.org/10.1016/j.radmeas.2011.08.001
Sonekar R. P., Gawande A. B., Ingle J. T., Omanwar S. K. Photoluminescence of a Green emitting phosphor LiCaBO3:Tb3+. International Journal of Knowledge Engineering. 2012;3(1): 53-54.
Ovsyankin V. V., Feofilov P. P. Cooperative sensitization of luminescence in crystals activated by rare earth ions.JETP Letters. 1966;4(11): 471. Available at: http://jetpletters.ru/ps/1642/article_25070.pdf
Chen J., Zhao J. X. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors. 2012;12(3): 2414-2435. https://doi.org/10.3390/s120302414
Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chemical Reviews. 2004;104(1): 139–174. https://doi.org/10.1021/cr020357g
Lyapin A. A.,Gushchin S. V., Kuznetsov S. V., … Ivanov V. K. Infrared-to visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express. 2018;8(7): 1863–1869. https://doi.org/10.1364/ome.8.001863
Radzhabov E. A., Shendrik R. Y. Upconversion of infrared radiation in Er3+-doped alkaline-earth fluorides. Opt. Spectrosc. 2020;128: 1752–1757. https://doi.org/10.1134/S0030400X20110211
Krut’ko V. A., Ryabova A. V., Komova M. G., … Loschenov V. B. Synthesis and luminescence of ultrafine Er3+- and Yb3+-doped Gd11SiP3O26 and Gd14B6Ge2O34 particles for cancer diagnostics. Inorganic Materials. 2013;49: 76–81. https://doi.org/10.1134/s0020168513010044
Park S., Cho S.-H. Spectral-converting behaviors of Er3+–Yb3+doped YOCl phosphors. Journal of Alloys and Compounds. 2014;584: 524-529. https://doi.org/10.1016/j.jallcom.2013.09.118
Milliez J., Rapaport A., Bass M., Cassanho A., Jenssen H. P. High-brightness white-light source based on up-conversion phosphors. Journal of Display Technology. 2006;2(3): 307–311. https://doi.org/10.1109/jdt.2006.879183
Hargunani S. P. Synthesis and upconversion properties of Er3+–Yb3+ co-doped LiBaBO3 phosphor. International Advanced Research Journal in Science, Engineering and Technology. 2016;3(11): 216–218. https://doi.org/10.17148/IARJSET.2016.31142
Hargunani S. P., Sonekar R. P., Omanwar S. K. Synthesis and upconversion properties of Er3+–Yb3+ co-doped LiSrBO3 phosphor. International Journal of Luminescence and Applications. 2017;7(2): 382-385.
Guo C., Yu J., Ding X., Lai M., Ren Z., Bai J. A dual-emission phosphor LiCaBO3: Ce3+, Mn2+ with energy transfer for near-UV LEDs. Journal of the Electrochemical Society. 2011;158(2): J42–J46. https://doi.org/10.1149/1.3526319
Zhang Z.-W., Lv R.-J., Zhu X.-Y., … Wang D.-J. Investigation of luminescence properties and the energy transfer mechanism of LiSrBO3:Ce3+, Tb3+ phosphors. Journal of Materials Science: Materials in Electronics. 2016;27: 6925–6931. https://doi.org/10.1007/s10854-016-4646-7
Dexter D. L. Concentration and excitation effects in multiphonon non-radiative transitions of rare-earth ions. Journal of Chemistry and Physics. 1954;22(6): 1063.
Kharabe V. R., Oza A. H., Dhoble S. J. Synthesis, PL characterization and concentration quenching effect in Dy3+and Eu3+ activated LiCaBO3 phosphor. Journal of Luminescence. 2015;30 (4): 432–438. https://doi.org/10.1002/bio.2756
Beck A. R., Das S., Manam J. Temperature dependent photoluminescence of Dy3+ doped LiCaBO3 phosphor. Journal of Materials Science: Materials in Electronics. 2017;28(22): 17168–17176. https://doi.org/10.1007/s10854-017-7645-4
Pekgozl I., Erdogmus E., Cubuk S., Basak A. S. Synthesis and photoluminescence of LiCaBO3: M (M: Pb2+ and Bi3+) phosphor. Journal of Luminescence. 2012;132: 1394–1399. https://doi.org/10.1016/j.jlumin.2012.01.001
Tamboli S., Rajeswari B., Dhoble S. J. Investigation of UV-emitting Gd3+-doped LiCaBO3 phosphor. Luminescence: the Journal of Biological and Chemical Luminescence. 2015;31(2): 551–556. https://doi.org/10.1002/bio.2994
Jiang L. H., Zhang Y. L., Li C. Y., Hao J. Q., Su Q. Thermoluminescence studies of LiSrBO3: RE 3+ (RE = Dy, Tb, Tm and Ce). Applied Radiation and Isotopes. 2010;68(1): 196–200. https://doi.org/10.1016/j.apradiso.2009.10.001
Wang Z.-J., Li P.-L., Yang Z.-P., Guo Q.-L., Li X. A novel yellow phosphor for white light emitting diodes. Chinese Physics B. 2010;19(1): 017801. https://doi.org/10.1088/1674-1056/19/1/017801
Li Y. C., Chang Y. H., Lin Y. F., Lin Y. J., Chang Y. S. High color purity phosphors of LaAlGe2O7 doped with Tm3+ and Er3+. Applied Physics Letters. 2006;89: 081110–081113. https://doi.org/10.1063/1.2337275
Li L., Liu Y., Li R., Leng Z., Gan S. Tunable luminescence properties of the novel Tm3+- and Dy3+- codoped LiLa(MoO4)x(WO4)2−x phosphors for white light-emitting diodes. RSC Advances. 2015;5: 7049–7057. https://doi.org/10.1039/C4RA15643A
Li P., Wang Z., Yang Z., Guo Q., Li X. Emission features of LiBaBO3:Sm3+ red phosphor for white LED. Materials Letters. 2009;63: 751–753. https://doi.org/10.1016/j.matlet.2008.12.041
Meng F., Zhang J., Yuan G., Seo H. J. Effect of temperature on the luminescence and decay behavior of divalent europium in lithium barium borate. Physical Status Solidi. Applications and materials science. 2015;212: 2922–2927. https://doi.org/10.1002/pssa.201532399
Mahajan R., Kumar S., Prakash R., Kumar V. Synthesis and luminescent properties of Sm3+ activated lithium zinc borate phosphor. AIP Conference Proceedings. 2018.;2006: 030045. https://doi.org/10.1063/1.5051301
Bhargavi G. N., Khare A. Luminescence studies of perovskite structured titanates: a Review. Optika i Spektroskopiya. 2015;118 (6): 933–948. 2015;118(6): 933–948. https://doi.org/10.7868/s003040341506015x
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.