Structural and optical properties of composition-graded InGaN nanowires
Abstract
At the moment, InGaN ternary compounds are of a great interest for the development of devices for sunlight driven water splitting. However, the synthesis of such materials is hindered by the fact that InxGa1–xN layers are susceptible to phase decomposition at x from 20 to 80%. Nanowires can be a promising solution to this problem. The purpose of our study was to analyze the structural and optical properties of InxGa1–xN nanowires with a gradient x content being inside the miscibility gap.
InxGa1–xN nanowires were grown on silicon substrates using plasma-assisted molecular beam epitaxy. The structural properties of nanowires were studied using scanning and transmission electron microscopy. The chemical composition and optical properties of nanowires were analyzed using energy-dispersive microanalysis and photoluminescence spectroscopy.
It was shown for the first time that the composition-graded InxGa1–xN nanowires with x from 40 to 60% can be grown using plasma-assisted molecular beam epitaxy. The grown samples exhibit photoluminescence at room temperature with a maximum at about 890 nm, which corresponds to an In content of about 62% according to the modified Vegard’s rule and the transmission electron microscopy data. The obtained results can be of practical interest for the development of devices for water splitting induced by sunlight or sources of near IR radiation
Downloads
References
Yang J., Liu Q., Zhao Z., Yuan Y., Redko R., Li S., Gao F. Hydrogen production strategy and research progress of photoelectro-chemical water splitting by InGaN nanorods. International Journal of Hydrogen Energy. 2023. https://doi.org/10.1016/j.ijhydene.2023.06.061
Tijent F. Z., Voss P., Faqir M. Recent advances in InGaN nanowires for hydrogen production using hotoelectrochemical water splitting. Materials Today Energy. 2023;33: 101275. https://doi.org/10.1016/j.mtener.2023.101275
Vanka S., Zhou B., Awni R. A., … Mi Z. InGaN/Si double-junction photocathode for unassisted solar water splitting. ACS Energy Letters. 2020;5(12): 3741–3751. https://doi.org/10.1021/acsenergylett.0c01583
Lin J., Wang W., Li G. Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water wplitting. Advanced Functional Materials. 2020;30(52): 2005677. https://doi.org/10.1002/adfm.202005677
Lin J., Zhang Z., Chai J., … Li. G. Highly efficient InGaN nanorods photoelectrode by constructing Z‑scheme charge transfer system for unbiased water splitting. Small. 2021;17(3): 2006666. https://doi.org/10.1002/smll.202006666
Chen H., Wang P., Wang X., … Nötzel R. 3D InGaN nanowire arrays on oblique pyramid-textured Si (311) for light trapping and solar water splitting enhancement. Nano Energy. 2021;83:105768. https://doi.org/10.1016/j.nanoen.2021.105768
Morkoç H. Handbook of nitride semiconductors and devices, Materials Properties, Physics and Growth. Vol. 1. John Wiley & Sons; 2009. https://doi.org/10.1002/9783527628438
Hwang Y. J., Wu C. H., Hahn C., Jeong H. E., Yang P. Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties. Nano Letters. 2012;12(3): 1678–1682. https://doi.org/10.1021/nl3001138
Ho I., Stringfellow G. Solid phase immiscibility in GaInN. Applied Physics Letters. 1996;69(18): 2701–2703. https://doi.org/10.1063/1.117683
Karpov S. Strategies for creating efficient, beautiful whites. Compound Semiconductor. 2015; 44–47. Available at: https://compoundsemiconductor. net/article/96572/Strategies_For_Creating_Efficient_Beautiful_Whites/feature
Dubrovskii V. G. Liquid-solid and vapor-solid distributions of vapor-liquid-solid III-V ternary nanowires. Physical Review Materials. 2023;7(9): 096001. https://doi.org/10.1103/PhysRevMaterials.7.096001
Kuykendall T., Ulrich P., Aloni S., Yang P. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Materials. 2007;6(12): 951–956. https://doi.org/10.1038/nmat2037
Roche E., Andre Y., Avit G., … Trassoudaine A.. Circumventing the miscibility gap in InGaN nanowires emitting from blue to red. Nanotechnology. 2018;29(46): 465602. https://doi.org/10.1088/1361-6528/aaddc1
Dubrovskii V., Cirlin G., Ustinov V. Semiconductor nanowhiskers: synthesis, properties, and applications. Semiconductors. 2009;43(12): 1539–1584.https://doi.org/10.1134/S106378260912001X
Consonni V. Self-induced growth of GaN nanowires by molecular beam epitaxy: A critical review of the formation mechanisms. Physica Status Solidi (RRL)–Rapid Research Letters. 2013;7(10): 699–712. https://doi.org/10.1002/pssr.201307237
Gridchin V. O., Kotlyar K. P., … Cirlin G. G. Multi-colour light emission from InGaN nanowires monolithically grown on Si substrate by MBE. Nanotechnology. 2021;32(33): 335604. https://doi.org/10.1088/1361-6528/ac0027
Chen H., Wang P., Ye H., … Nötzel R. Vertically aligned InGaN nanowire arrays on pyramid textured Si (100): A 3D arrayed light trapping structure for photoelectrocatalytic water splitting. Chemical Engineering Journal. 2021;406: 126757. https://doi.org/10.1016/j.cej.2020.126757
Pan X., Hong H., Deng R., Luo M., Nötzel R. In desorption in InGaN nanowire growth on Si generates a unique light emitter: from In-Rich InGaN to the intermediate core–shell InGaN to pure GaN. Crystal Growth & Design. 2023;23(8): 6130–6135. https://doi.org/10.1021/acs.cgd.3c00622
Gridchin V. O., Reznik R. R., Kotlyar K. P., … Cirlin G. E. MBE growth of InGaN nanowires on SiC/ Si (111) and Si (111) substrates. Technical Physics Letters. 2022;48(14): 24–25. https://doi.org/10.21883/TPL.2022.14.52105.18894
Lu Y. J., Wang C. Y., Kim J., … Gwo S. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Letters. 2014;14(8): 4381–4388. https://doi.org/10.1021/nl501273u
Morassi M., Largeau L., Oehler F., … Gogneau N. Morphology tailoring and growth mechanism of Indium-rich InGaN/GaN axial nanowire heterostructures by plasma-assisted molecular beam epitaxy. Crystal Growth & Design. 2018;18(4): 2545–2554. https://doi.org/10.1021/acs.cgd.8b00150
Calleja E., Ristić J., Fernández-Garrido S., … Sánchez B. Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks. Physica Status Solidi (b). 2007;244(8): 2816–2837. https://doi.org/10.1002/pssb.200675628
Koblmüller G., Gallinat C., Speck J. Surface kinetics and thermal instability of N-face InN grown by plasma-assisted molecular beam epitaxy. Journal of Applied Physics. 2007;101(8): 083516. https://doi.org/10.1063/1.2718884
Casallas-Moreno Y., Gallardo-Hernández S., Yee-Rendón C., … López-López M. Growth mechanism and properties of self-assembled inn nanocolumns on al covered si (111) substrates by pa-MBE. Materials. 2019;12(19): 3203. https://doi.org/10.3390/ma12193203
Gridchin V., Dragunova A., Kotlyar K., … Cirlin G. E. Morphology transformation of InGaN nanowires grown on Si substrate by PA-MBE. Journal of Physics: Conference Series. 2021;2086(1): 012013. https://doi.org/10.1088/1742-6596/2086/1/012013
Zhang X., Haas B., Rouvière J. L., Robin E., Daudin B. Growth mechanism of InGaN nano-umbrellas. Nanotechnology. 2016;27(45): 455603. https://doi.org/10.1088/0957-4484/27/45/455603
Orsal G., El Gmili Y., Fressengeas N., … Salvestrini J. P. Bandgap energy bowing parameter of strained and relaxed InGaN layers. Optical Materials Express. 2014;4(5): 1030–1041. https://doi.org/10.1364/OME.4.001030
Tourbot G., Bougerol C., Grenier A., … Daudin B. Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE. Nanotechnology. 2011;22(7): 075601. https://doi.org/10.1088/0957-4484/22/7/075601
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.