Anomalous electron channeling in PZT thin films
Abstract
The study of the surface of lead zirconate-titanate (PZT) thin films using a scanning electron microscope (SEM) identified the patterns of electron channeling on the surface of the perovskite phase crystals. However, the observation conditions were completely uncommon and contradicted model representations. Thus, there was enough evidence to believe that the observed patterns of electron channeling were an anomaly. It was necessary to conduct an additional detailed study of the perovskite crystal in a PZT thin film in order to clarify which conditions could cause this anomaly.
In particular, the method of electron backscatter diffraction (EBSD) in SEM was used to study the crystallographic specific features of the crystal. The method is based on the collection and automatic processing of electron diffraction patterns which calculate a corresponding crystallographic orientation for each point on the scanned crystal surface.
As a result, the study revealed the unusual features of the crystallographic structure of perovskite in a PZT thin film that provided an opportunity for the manifestation of anomalous electron channeling. The research showed that the crystal lattice of perovskite experienced an axially symmetric monotone bend, which determined the round shape of the crystal. The study demonstrated the possibility of producing ferroelectric crystals with a curved crystallographic surface. In order to describe the growth of round perovskite crystals from the amorphous phase in PZT thin films, the author provided a dislocation model where the continuous bending of the perovskite crystal lattice could be explained by the accommodation
of mechanical stresses with a decrease in the phase volume of the film material. In addition, it was shown that the bands observed in the electron channeling patterns corresponded to crystallographic planes, while any distortions of the pattern indicated a local deformation of the lattice in a highly symmetrical uniformly curved perovskite crystal in a PZT thin film
Downloads
References
Wang Y., Yan J., Ouyang J., Cheng H., Chen N., Yan P. Microstructure evolution with rapid thermal annealing time in (001)-oriented piezoelectric PZT films integrated on (111) Si. Materials. 2023;16(5): 2068. https://doi.org/10.3390/ma16052068
Bukharaev A. A., Zvezdin A. K., Pyatakov A P., Fetisov Y. K. Straintronics: a new trend in micro- and nanoelectronics and materials science. Physics-Uspekhi. 2018;61(12): 1175–1212. https://doi.org/10.3367/UFNe.2018.01.038279
Ma Y., Son J., Wang X., Liu Y., Zhou J. Synthesis, microstructure and properties of magnetron sputtered lead zirconate titanate (PZT) thin film coatings. Coatings. 2021;11(8): 944 https://doi.org/10.3390/coatings11080944
Song L, Glinsek S., Defay E. Toward lowtemperature processing of lead zirconate titanate thin films: Advances, strategies, and applications. Applied Physical Review. 2021;8: 041315. https://doi.org/10.1063/5.0054004
Picco A., Ferrarini P., Ferrarini P., … Lazzari M. Piezoelectric materials for MEMS. In: Vigna B., Ferrari P., Villa F. F., Lasalandra E., Zerbini S. (eds). Silicon Sensors and Actuators. Springer, Cham.; 2022. https://doi.org/10.1007/978-3-030-80135-9_10
Teuschel M., Heyes P., Horvath S., Novotny C., Cleric A. R. Temperature stable piezoelectric imprint of epitaxial grown PZT for zero-bias driving MEMS actuator operation. Micromachines. 2022;13(10): 1705. https://doi.org/10.3390/mi13101705
Scott J. F. Future issues in ferroelectric miniaturization. Ferroelectrics. 1998;206(1): 365-379. https://doi.org/10.1080/00150199808009170
Valeeva A. R., Pronin I. P., Senkevich S. V., … Nemov S. A. Microstructure and dielectric properties of thin polycrystalline PZT films with inhomogeneous distribution of the composition over thickness. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2021;15(1): 12–17. https://doi.org/10.1134/S1027451022010189
Staritsyn M. V., Fedoseev M. L., Kaptelov E. Yu., Senkevich S. V., Pronin I. P. Structure changing of submicron PZT films with a fine variation of the composition corresponding to morphotropic phase boundary. Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials. 2021;13: 400–410.https://doi.org/10.26456/pcascnn/2021.13.400
Elshin A. S., Staritsyn M. V., Pronin I. P., Senkevich S. V., Mishina E. D. Nonlinear optics for crystallographic analysis in lead zirconate titanate. Coatings. 2023;13(2): 247. https://doi.org/10.3390/coatings13020247
Staritsyn M. V, Fedoseev M. L., Kiselev D. A., Kaptelov E. Yu., Pronin I. P., Senkevich S. V., Pronin V. P. Ferroelectric properties of lead zirconate titanate thin films obtained by RF magnetron sputtering near the morphotropic phase boundary. Physics of the Solid State. 2023;65(2): 290. https://doi.org/10.21883/PSS.2023.02.55414.531
Pronin V. P., Dolgintsev D. M., Osipov V. V., Pronin I. P., Senkevich S. V., Kaptelov E. Yu. The change in the phase state of thin PZT layers in the region of the morphotropic phase boundary obtained by the RF magnetron sputtering with varying target-substrate distance. IOP Conference Series: Materials Science and Engineering. 2018;387: 012063. https://doi.org/10.1088/1757-899X/387/1/012063
Elshin A. S., Pronin I. P., Senkevich S. V., Mishina E. D. Nonlinear optical diagnostics of thin polycrystalline lead zirconate titanate films. Technical Physics Letters. 2020;46: 385–388. https://doi.org/10.1134/S1063785020040215
Goldstein J. I., Newbury D. E., Echlin P., … Michael J. R. Special topics in scanning electron microscopy. In: Scanning electron microscopy and X-ray microanalysis. Springer, Boston, MA; 2003. pp. 247– 256. https://doi.org/10.1007/978-1-4615-0215-9_5
Tulinov A. F. Influence of the crystal lattice on some atomic and nuclear processes. Sov. Phys. Usp. 1966; 8: 864–872. https://doi.org/10.1070/PU1966v008n06ABEH003001
Lindhard J. Influence of crystal lattice on motion of energetic charged particles. Uspekhi Fizicheskih Nauk. 1969;99(10): 249–296. https://doi.org/10.3367/UFNr.0099.196910c.0249
Thompson M. W. The channelling of particles in crystals. Contemporary Physics. 1968;9(4): 375–398. https://doi.org/10.1080/00107516808220091
Lutjes N. R.; Zhou S.; Antoja-Lleonart J.; Noheda B., Ocelík V. Spherulitic and rotational crystal growth of quartz thin films. Scientific Reports. 2021;11(1): 14888. https://doi.org/10.1038/s41598-021-94147-y
Wright S. I., Nowell M. M., De Kloe R., Chan L. Orientation precision of electron backscatter diffraction measurements near grain boundaries. Microscopy and Microanalysis. 2014;20(3): 852–863. https://doi.org/10.1017/S143192761400035X
Pronin V. P., Kanareikin A. G., Dolgintsev D. M., Kaptelov E. Y., Senkevich S. V., Pronin I. P. Microstructure, phase analysis and dielectric response of thin Pb(Zr,Ti)O3 films at the morphotropic phase boundary. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2017;11(1): 216–222. https://doi.org/10.1134/S1027451017010323
Kolosov V. Y., Thölén A. R. Transmission electron microscopy studies of the specific structure of crystals formed by phase transition in iron oxide amorphous films. Acta Materialia. 2000;48(8): 1829–1840. https://doi.org/10.1016/S1359-6454(99)00471-1
Kooi B. J., De Hosson J. Th. M. On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage. Journal of Applied Physics. 2004;95(9): 4714–4721. https://doi.org/10.1063/1.1690112
Savytskii D., Jain H., Tamura N., Dierolf V. Rotating lattice single crystal architecture on the surface of glass. Scientific Reports. 2016;6: 36449. https://doi.org/10.1038/srep36449
Konijnenberg P. J., Zaefferer S. Raabe D. Assessment of geometrically necessary dislocation levels derived by 3D EBSD. Acta Materialia. 2015;99: 402–414. https://doi.org/10.1016/j.actamat.2015.06.051
Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scripta Materialia. 2008;58(11): 994–997. https://doi.org/10.1016/j.scriptamat.2008.01.050
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.