X-ray luminescence of Sr0.925–xBaxEu0.075F2.075 nanopowders
Abstract
We synthesized powders of single-phase solid solutions Sr0.925–xBaxEu0.075F2.075 (x = 0.00, 0.20, 0.25, 0.30, 0.35 and 0.40) by a precipitation technique from nitrate aqueous solutions. The lattice parameters increase linearly as the barium content increases. We recorded a significant increase in the X-ray luminescence intensity of europium at increasing barium content. Upon increasing barium content, the intensity of the luminescence of strong 5D0 → 7F1 band increases exponentially, and we observed blue and red shifts in the position of the europium luminescence bands for 5D0 → 7F1 and 5D0 → 7F4, respectively
Downloads
References
Lebedev V. T., Shakhov F. M., Vul A. Y., … Fomin E. V. X-ray excited optical luminescence of Eu in diamond crystals synthesized at high pressure high temperature. Materials. 2023;16: 830. https://doi.org/10.3390/ma16020830
Magyar A., Hu W., Shanley T., Flatté M. E., Hu E., Aharonovich I. I. Synthesis of luminescent europium defects in diamond. Nature Communications. 2014;5(1): 3523. https://doi.org/10.1038/ncomms4523
Yudina E. B., Aleksenskii A. E., Bogdanov S. A., … Vul’ A. Y. CVD nanocrystalline diamond film doped with Eu. Materials. 2022;15: 5788. https://doi.org/10.3390/ma15165788
Borzdov Y. M., Khokhryakov A. F., Kupriyanov I. N., Nechaev D. V., Palyanov Y. N. Crystallization of diamond from melts of europium salts. Crystals. 2020;10: 376. https://doi.org/10.3390/cryst10050376
Palyanov Y. N., Borzdov Y. M., Khokhryakov A. F., Kupriyanov I. N. High-pressure synthesis and characterization of diamond from europium containing systems. Carbon. 2021;182: 815–824. https://doi.org/10.1016/j.carbon.2021.06.081
Sedov V., Kuznetsov S., Martyanov A., Ralchenko V. Luminescent diamond composites. Functional Diamond. 2022;2: 53–63. https://doi.org/10.1080/26941112.2022.2071112
Chen H.-J., Wang X.-P., Wang L.-J., … Liu L.-H. Bright blue electroluminescence of diamond/CeF3 composite films. Carbon. 2016;109: 192–195. https://doi.org/10.1016/j.carbon.2016.07.061
Chen J.-X., Wang X.-P., Wang L.-J., Yang X.-W., Yang Y. White electroluminescence of diamond/HoF3/ diamond composite film. Journal of Luminescence. 2020;224: 117310. https://doi.org/10.1016/j.jlumin.2020.117310
Sedov V. S., Kuznetsov S. V., Ralchenko V. G., … Konov V. I. Diamond-EuF3 nanocomposites with brigh torange photoluminescence. Diamond and Related Materials. 2017;72: 47–52. https://doi.org/10.1016/j.diamond.2016.12.022
Sedov V., Kouznetsov S., Martyanov A., … Fedorov P. Diamond–rare earth composites with embedded NaGdF4:Eu nanoparticles as robust photo- and X-ray-luminescent materials for radiation monitoring screens. ACS Applied Nano Materials. 2020;3: 1324–1331. https://doi.org/10.1021/acsanm.9b02175
Sobolev B. P. The rare earth trifluorides: the high temperature chemistry of the rare earth trifluorides. P.1. The High Temperature Chemistry of the Rare Earth Trifluorides. Institut d’Estudis Catalans; 2000. 540 p
Sobolev B. P. The rare earth trifluorides. P. 2. Introduction to materials science of multicomponent metal fluoride crystals. Institut d’Estudis Catalans, Barcelona, 2001. 520 p.
Heise M., Scholz G., Krahl T., Kemnitz E. Luminescent properties of Eu3+ doped CaF2, SrF2, BaF2 and PbF2 powders prepared by high-energy ball milling. Solid State Sciences. 2019;91: 113–118. https://doi.org/10.1016/j.solidstatesciences.2019.03.014
Peng J., Hou S., Liu X., … Su Z. Hydrothermal synthesis and luminescence properties of hierarchical SrF2 and SrF2:Ln3+ (Ln=Er, Nd, Yb, Eu, Tb) micro/nanocomposite architectures. Materials Research Bulletin. 2012;47: 328–332. https://doi.org/10.1016/j.materresbull.2011.11.030
Krahl T., Beer F., Relling A., Gawlitza K., Rurack K., Kemnitz E. Toward luminescent composites by phase transfer of SrF2:Eu3+ nanoparticles capped with hydrophobic antenna ligands. ChemNanoMat. 2020;6: 1086–1095. https://doi.org/10.1002/cnma.202000058
Ermakova Y. A., Pominova D. V., Voronov V. V., … Kuznetsov S. V. Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F. Dalton Transactions. 2022;51: 5448–5456. https://doi.org/10.1039/D2DT00304J
Kuznetsov S., Ermakova Y., Voronov V., … Turshatov A. Up-conversion quantum yields of SrF2:Yb3+,Er3+ sub-micron particles prepared by precipitation from aqueous solution. Journal of Materials Chemistry C. 2018;6: 598–604. https://doi.org/10.1039/C7TC04913G
Ermakova Yu. A., Alexandrov A. A., Fedorov P. P., … Kuznetsov S. V. Synthesis of single-phase Sr1–xBaxF2 solid solutions by co-precipitation from aqueous solutions. Solid State Sciences. 2022;130: 106932. https://doi.org/10.1016/j.solidstatesciences.2022.106932
Cortelletti P., Pedroni M., Boschi F., … Speghini A. Luminescence of Eu3+ activated CaF2 and SrF2 nanoparticles: effect of the particle size and codoping with alkaline ions. Crystal Growth & Design. 2018;18: 686–694. https://doi.org/10.1021/acs.cgd.7b01050
Yagoub M. Y. A., Swart H. C., Noto L. L., O’Connel J. H., Lee M. E., Coetsee E. The effects of Eu-concentrations n the luminescent properties of SrF2:Eu nanophosphor. Journal of Luminescence. 2014;156: 150–156. https://doi.org/10.1016/j.jlumin.2014.08.014
Yusenko K. V., Kabelitz A., Schökel A., Guilherme Buzanich A. Local structure of europium-doped luminescent strontium fluoride nanoparticles: Comparative X-ray absorption spectroscopy and diffraction study. ChemNanoMat. 2021;7: 1221–1229. https://doi.org/10.1002/cnma.202100281
Pan Y., Wang W., Zhou L., … Li L. F−-Eu3+ charge transfer energy and local crystal environment in Eu3+ doped calcium fluoride. Ceramics International. 2017;43: 13089–13093. https://doi.org/10.1016/j.ceramint.2017.06.197
Trojan-Piegza J., Wang Z., Kinzhybalo V., Zhou G., Wang S., Zych E. Spectroscopic reflects of structural disorder in Eu3+/Pr3+-doped La0.4Gd1.6Zr2O7 transparent ceramics. Journal of Alloys and Compounds. 2018;769: 18–26. https://doi.org/10.1016/j.jallcom.2018.07.233
Binnemans K. Interpretation of europium(III) spectra. Coordination Chemistry Reviews. 2015;295: 1–45. https://doi.org/10.1016/j.ccr.2015.02.015
Drobysheva A. R., Ermakova Yu. A., Alexandrov A. A. … Kuznetsov S. V. X-ray luminescence of SrF2: Eu nanopowders. Optics and Spectroscopy. 2023;131: 633. https://doi.org/10.61011/EOS.2023.05.56516.58-22
Fedorov P., Sobolev B. P. Concentration dependence of unit-cell parameters of phases M1–xRxF2+x with the fluorite structure. Soviet Physics. Crystallography.1992;37: 651–656.
Copyright (c) 2024 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.