Thermodynamic study of zinc antimonides by the electromotive force measurements
Abstract
Zinc antimonides and phases based on them are of great interest as earth-abundant, low-cost, and environmentally friendly thermoelectric materials. The present work demonstrates the results of a thermodynamic study of the ZnSb and Zn4Sb3 compounds by a low-temperature electromotive force (emf) method with a glycerol electrolyte in the 300-430 K temperaturesrange.
Measurements were performed using equilibrium samples from the ZnSb+Sb and ZnSb+Zn4Sb3 two-phase regions of the Zn-Sb binary system. The phase compositions of prepared samples were controlled by means of the powder X-ray diffraction (PXRD) method. Using the least square method, the linear equations of temperature dependences of the emf data wereobtained.
Based on these equations and relevant thermodynamic expressions, the partial molar Gibbs free energy, enthalpy, and entropy of zinc in alloys were calculated. Utilizing the phase diagram of the Zn-Sb system, the virtual-cell reactions for both binary compounds were determined, based on which their standard hermodynamic functions of formation and standard entropies were calculated. A comparative analysis of the obtained results with available literature data was carried out.
The results of the current work are highly accurate and can be considered a new contribution to the thermodynamics of zinc antimonides
Downloads
References
Assoud A., Kleinke H. Metal pnictides: structures and thermoelectric properties. Handbook of Solid-State сhemistry. 2017. https://doi.org/10.1002/9783527691036.hsscvol1012
Rasaki S. A., Thomas T., Yang M. Iron based chalcogenide and pnictide superconductors: from discovery to chemical ways forward. Progress in Solid State Chemistry. 2020; 59: 100282. https://doi.org/10.1016/j.progsolidstchem.2020.100282
Kumar J., Gautam G. S. Study of pnictides for photovoltaic applications. Physical Chemistry Chemical Physics. 2023;25(13): 9626–9635. https://doi.org/10.1039/D2CP04453F
Marchand R., Jeitschko W. Ternary lanthanoidtransition metal pnictides with ThCr2Si2-type structure. Journal of Solid-State Chemistry. 1978;24(3-4): 351–357. https://doi.org/10.1016/0022-4596(78)90026-9
Liu Z. K., Jiang J., Zhou B., …Chen Y. L. A stable threedimensional topological Dirac semimetal Cd3As2. Nature Materials. 2014;13(7): 677–681. https://doi.org/10.1038/nmat3990
Liu Z. K., Zhou B., Zhang Y., … Chen Y. L. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science. 2014;343(6173): 864–867. https://doi.org/10.1126/science.1245085
Wang Z., Weng H., Wu Q., Dai X., Fang Z. Threedimensional Dirac semimetal and quantum transport in Cd3As2. Physical Review B – Condensed Matter and Materials Physics. 2013;88(12): 125427. https://doi.org/10.1103/PhysRevB.88.125427
Crassee I., Sankar R., Lee W. L., Akrap A., Orlita M. 3D Dirac semimetal Cd3As2: a review of material properties. Physical Review Materials. 2018;2(12): 120302. https://doi.org/10.1103/PhysRevMaterials.2.120302
Song X., Finstad T. G. Review of research on the thermoelectric material ZnSb. Thermoelectrics for power generation: a look at trends in the technology. 2016. https://doi.org/10.5772/65661
Castellero A., Fanciulli C., Carlini R., … Baricco M. Effect of processing routes on the synthesis and properties of Zn4Sb3 thermoelectric alloy. Journal of Alloys and Compounds. 2015;653: 54–60. https://doi.org/10.1016/j.jallcom.2015.08.251
Sreeparvathy P. C., Kanchana V., Vaitheeswaran G. Thermoelectric properties of zinc based pnictide demiconductors. Journal of Applied Physics. 2016;119(8): 085701. https://doi.org/10.1063/1.4942011
Bjerg L., Madsen G. K. H., Iversen B. B. Enhanced thermoelectric properties in zinc antimonides. Chemistry of Materials. 2011;23(17): 3907–3914. https://doi.org/10.1021/cm201271d
Snyder G. J., Toberer E. S. Complex thermoelectric materials. Nature Materials. 2008;7(2): 105–114. https://doi.org/10.1038/nmat2090
Ostovari Moghaddam A., Shokuhfar A., Zhang Y., … Cabot A. Ge-doped ZnSb/β-Zn4Sb3 nanocomposites with high thermoelectric performance. Advanced Materials Interfaces. 2019; 6(18): 1900467. https://doi.org/10.1002/admi.201900467
Carlini R., Marré D., Pallecchi I., Ricciardi R., Zanicchi G. Thermoelectric properties of Zn4Sb3 intermetallic compound doped with aluminum and silver. Intermetallics. 2014; 45: 60–64. https://doi.org/10.1016/j.intermet.2013.10.002
Gau H. J., Yu J. L., Wu C. C., Kuo Y. K., Ho C. H. Thermoelectric properties of Zn–Sb alloys doped with In. Journal of Alloys and Compounds. 2009;480(1): 73–75. https://doi.org/10.1016/j.jallcom.2008.09.202
Liu X. J., Wang C. P., Ohnuma I., Kainuma R., Ishida K. Thermodynamic assessment of the phase diagrams of the Cu-Sb and Sb-Zn systems. Journal of Phase Equilibria. 2000; 21: 432–442. https://doi.org/10.1361/105497100770339608
Izard V., Record M. C, Tedenac J. C., Fries S. G. Discussion on the stability of the antimony zinc binary phases. Calphad. 2001;25(4): 567–581. https://doi.org/10.1016/S0364-5916(02)00008-1
Adjadj F., Belbacha E. D., Bouharkat M., Kerboub A. Crystallographic study of the intermediate compounds SbZn, Sb3Zn4 and Sb2Zn3. Journal of Alloys and Compounds. 2006;419(1-2): 267–270. https://doi.org/10.1016/j.jallcom.2005.09.068
Adjadj F., Belbacha E. D., Bouharkat M. Differential calorimetric analysis of the binary system Sb–Zn. Journal of alloys and compounds. 2007;430(1-2): 85–91. https://doi.org/10.1016/j.jallcom.2006.04.051
Li J. B., Record M. C., Tedenac J. C. A thermodynamic assessment of the Sb–Zn system. Journal of Alloys and compounds. 2007;438(1-2): 171–177. https://doi.org/10.1016/j.jallcom.2006.08.035
Okamoto H. Sb-Zn (Antimony-Zinc). Journal of Phase Equilibria and Diffusion. 2008;29: 290–290. https://doi.org/10.1007/s11669-008-9315-y
Lo C. W. T., Svitlyk V., Chernyshov D., Mozharivskyj Y. The updated Zn–Sb phase diagram. How to make pure Zn13Sb10 (“Zn4Sb3”). Dalton Transactions. 2018;47(33): 11512–11520. https://doi.org/10.1039/C8DT02521E
Кubaschewski O., Alcock C. B., Spenser P. Materials Thermochemistry. Oxford: Pergamon Press; 1993. 6th edn. 363 p.
Iorish V. S., Yungman V. S. (eds.). Thermal constants of substances: database, 2006. Version 2.
Barin I. Thermochemical data of pure substances. New York: Wiley-VCH; 2008. 3rd edn. 2003 p.
Schlesinger M. E. Thermodynamic properties of solid binary antimonides. Chemical Reviews. 2013;113(10): 8066–8092. https://doi.org/10.1021/cr400050e
Aliev Z. S., Babanly M. B., Shevelkov A. V., Babanly D. M., Tedenac J. C. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI. International journal of materials research. 2012;103(3): 290–295. https://doi.org/10.3139/146.110646
Imamaliyeva S. Z., Musayeva S. S., Babanly D. M., Jafarov Y. I., Taghiyev D. B., Babanly M. B. Determination of the thermodynamic functions of bismuth chalcoiodides by EMF method with morpholinium formate as lectrolyte.
Thermochimica Acta. 2019;679: 178319. https://doi.org/10.1016/j.tca.2019.178319
Aliev Z. S., Musayeva S. S., Imamaliyeva S. Z., Babanly M. B. Thermodynamic study of antimony chalcoiodides by EMF method with an ionic liquid. Journal of Thermal Analysis and Calorimetry. 2018;133: 1115–1120. https://doi.org/10.1007/s10973-017-6812-4
Alverdiyev I. J., Aliev Z. S., Bagheri S. M., Mashadiyeva L. F., Yusibov Y. A., Babanly M. B. Study of the 2Cu2S+ GeSe2 ↔ 2Cu2Se+ GeS2 reciprocal system and thermodynamic properties of the Cu8GeS6−xSex solid solutions. Journal of Alloys and Compounds. 2017;691: 255–262. https://doi.org/10.1016/j.jallcom.2016.08.251
Mashadiyeva L. F., Mammadli P. R., Babanly D. M., Ashirov G. M., Shevelkov A. V., Yusibov Y. A. Solid-phase equilibria in the Cu-Sb-S system and thermodynamic properties of copper-antimony sulfides. JOM. 2021;73: 1522–1530. https://doi.org/10.1007/s11837-021-04624-y
Babanly M. B., Yusibov Y. A. Electrochemical methods in thermodynamics of inorganic systems. Baku: BSU ubl.; 2011. 306 p.
Morachevsky A. G., Voronin G. F., Heiderich V. A., Kutsenok I. B. Electrochemical methods of research in the thermodynamics of metallic systems. ICC “Akademkniga” Publ.; 2003. 334 p.
Babanly M. B., Yusibov Y. A., Babanly N. B. In: Electromotive force and measurement in several systems. S. ara
(ed.). London: Intechweb. Org; 2011. p. 57. https://doi.org/10.5772/28934
Shao Y. (ed.). Electrochemical cells – new advances in fundamental research and applications. London: inTech; 2012. 252 p. https://doi.org/10.5772/1890
Goryacheva V. I., Geiderikh V. A. The thermodynamic properties of phases in the zinc-antimony system. Russian Journal of Physical Chemistry A. 1997;71(4): 526–529.
Goncharuk L. V, Lukashenko G. M. Thermodynamic properties of zinc antimonides. Journal of Applied chemistry. USSR (Engl. Transl.). 1988;62(8): 10.
Zabdyr L. A. Thermodynamic properties of zinc antimonides. Canadian Metallurgical Quarterly. 1980;19(4): 359–362. https://doi.org/10.1179/cmq.1980.19.4.359
Eremenko V. N., Lukashenko G. M. Thermodynamic properties of higher zinc antimonide. Russian Journal of Inorganic Chemistry. (Engl. Transl.). 1963;8(3).
Hirayama C. The dissociation pressure of zinc antimonide. Journal of The Electrochemical Society. 1963;110(1): 88. https://doi.org/10.1149/1.2425680
Stolyarova T. A. Enthalpy of formation of zinc antimonite ZnSb. Russian Metallurgy (Metally). (Engl. Transl.). 1979;6: 61.
Shchukarev S. A., Morozova M. P., Sapozhnikov Yu. P. Enthalpy of formation of compounds of zinc with tntimony. Journal of General Chemistry of the USSR (Engl. Transl.). 1956;26: 321.
Liu Y., Tedenac J. C. Thermodynamic modeling of the Cd–Sb–Zn ternary system. Calphad. 2009;33(4): 684–
https://doi.org/10.1016/j.calphad.2009.08.006
Li J. B., Record M. C., Tedenac J. C. A thermodynamic assessment of the Sb–Zn system. Journal of Alloys and Compounds. 2007;438(1-2): 171–177. https://doi.org/10.1016/j.jallcom.2006.08.035
Seltz H., DeWitt B. J. A thermodynamic study of the lead-antimony system. Journal of the American Chemical Society. 1939;61(10): 2594–2597. https://doi.org/10.1021/ja01265a007
Zabdyr L. A. Equilibrium diagram and thermodynamic properties of cadmium—antimony binary alloys. Critical assessment. Calphad. 1993;17(2): 125–132. https://doi.org/10.1016/0364-5916(93)90012-Z
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.