Calorimetric determination of phase transitions of Ag8ВX6 (B = Ge, Sn; X = S, Se) compounds
Abstract
Differential scanning calorimetry (DSC) was used to study ternary Ag8GeS6, Ag8GeSe6, Ag8SnS6, and Ag8SnSe6 compounds which undergo polymorphic transformations at relatively low temperatures. Two samples of each compound with different masses in the range of 20-40 mg were examined and three DSC heating curves were taken for each sample. The DSC curve data were used to determine the temperatures and enthalpies of the phase transitions of the studied compounds from a low-temperature rhombic modification to a high-temperature cubic modification. The difference in the DSC data between all samples and all heating curves did not exceed 2%. The obtained data were used to calculate the entropies of phase
transitions. It was shown that these values are abnormally high. The study also involved a comparative analysis of the obtained thermodynamic data for the Ag8GeSe6 and Ag8SnSe6 compounds and the results obtained by the method of electromotive forces.
Downloads
References
Babanly M. B., Yusibov Yu. A., Abishov V. T. Ternary chalcogenides based on copper and silver. Baku: BQU Publ.; 1993. 342 p. (In Russ.)
Semkiv I., Ilchuk H., Pawlowski M., Kusnezh V. Ag8SnSe6 argyrodite synthesis and optical properties. Opto-Electronics Review. 2017;25(1): 37–40. https://doi.org/10.1016/j.opelre.2017.04.002
Studenyak I. P., Pogodin A. I., Studenyak V. I., Izai V. Y., Filep M. J., Kokhan O. P., Kúš P. Electrical properties of copper- and silver-containing superionic (Cu1−xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics. 2020;345: 115183. https://doi.org/10.1016/j.ssi.2019.115183
Lin S., Li W., Pei Y. Thermally insulative thermoelectric argyrodites. Materials Today. 2021;48:198–213. https://doi.org/10.1016/j.mattod.2021.01.007
Shen X., Yang C., Liu Y., Wang G., Tan H. A High temperature structural and thermoelectric study of argyrodite Ag8GeSe6. ACS Applied Materials & Interfaces. 2019;11(2): 2168–2176. https://doi.org/10.1021/acsami.8b19819
Jin M., Lin S., Li W., Chen Z., Li R., Wang X. Pei Y. Fabrication and thermoelectric properties of singlecrystal argyrodite Ag8SnSe6. Chemistry of Materials. 2019;31(7): 2603–2610. https://doi.org/10.1021/acs.chemmater.9b00393
Jiang B., Qiu P., Eikeland E., Chen H., Song Q., Ren D., Chen L. Cu8GeSe6-based thermoelectric materials with an argyrodite structure. Journal of Materials Chemistry C. 2017;5(4): 943–952. https://doi.org/10.1039/C6TC05068A
Jiang Q., Li S., Luo Y., Xin J., Li S., Li W., Yang J. Ecоfri end ly high lyrobust Ag8SiSe6-basedthermoelectric composites with excellent performance near room temperature. ACS Applied Materials & Interfaces. 2020;12(49): 54653–54661. https://doi.org/10.1021/acsami.0c15877
Fan Y., Wang G., Wang R., Zhang B., Shen X., Jiang P., Zhang X., Gu H., Lu X., Zhou X. Enhanced thermoelectric properties of p-type argyrodites Cu8GeS6 through Cu vacancy. Journal of Alloys and Compounds. 2020;822: 153665. https://doi.org/10.1016/j.jallcom.2020.153665
Yang C., Luo, Y., Li X., Cui J. N-type thermoelectric Ag8SnSe6 with extremely low lattice thermal conductivity by replacing Ag with Cu. RSC Advances. 2021;11: 3732–3739. https://doi.org/10.1039/D0RA10454J
Li W., Lin S., Ge B., Yang J., Zhang W., Pei Y. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Sciences. 2016;3(11): 1600196−1600212. https://doi.org/10.1002/advs.201600196
Ghrib T., Al-Otaibi A. L., Almessiere M. A., Assaker I. B., Chtourou R. High thermoelectric figure of merit of Ag8SnS6 component prepared by electrodeposition technique. Chinese Physics Letters. 2015;32(12): https://doi.org/10.1088/0256-307X/32/12/127402
Namiki H., Yahisa D., Kobayashi M., Shono A., Hayashi H. Enhancement and manipulation of the thermoelectric properties of n-type argyrodite Ag8SnSe6 with ultralow thermal conductivity by controlling the carrier concentration through Ta doping. AIP Advances. 2021; 11: 075125. https://doi.org/10.1063/5.0056533
Ivanov-Shits A. K., Murin I. V. Solid state ionics, v. 1. Saint Peterburg: SPU Publ.; 2000. 616 p. (In Russ.)
Berezin V. M., Vyatkin Q. P. Superionic semiconducting chalcogenides. Celyabinsk: Yu.Ur.Qu. Publ.; 2001. 135 p. (In Russ.)
Liu H., Shi X., Xu F. et al. Copper ion liquid-like thermoelectrics. Nature Materials. 2012;11(5): 422–425. https://doi.org/10.1038/nmat3273
Heep B. K., Weldert K. S., Krysiak Y., Day T. W., Zeier W. G., Kolb U., Snyder G. J., Tremel W. High electron mobility and disorder induced by silver ion migration lead to good thermoelectric performance in the argyrodite Ag8SiSe6. Chemistry of Materials. 2017;29(11): 4833−4839. https://doi.org/10.1021/acs.chemmater.7b00767
Lin Y., Fang S., Su D., Brinkman K. S. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors. Nature Communications. 2015;6(1): 1–9. https://doi.org/10.1038/ncomms7824
Boucher F., Evain M., Brec R. Distribution and ionic diffusion path of silver in g-Ag8GeTe6: A temperature dependent anharmonic single crystal structure study. Journal of Solid State Chemistry. 1993;107(2): 332–346. https://doi.org/10.1006/jssc.1993.1356
Heep B. K., Weldert K. S., Krysiak Y., Day T. W., Zeier W. G., Kolb U., Snyder G. J., Tremel W. High electron mobility and disorder induced by silver ion migration lead to good thermoelectric performance in the argyrodite Ag8SiSe6. Chemistry of Materials. 2017;29(11): 4833−4839. https://doi.org/10.1021/acs.chemmater.7b00767
Babanly M. B., Yusibov Yu. A., Babanly N. B. The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary copper and silver chalcogenides. Electromotive force and measurement in several systems. Electromotive Force and Measurement in Several Systems. 2011;57-78: https://doi.org/10.5772/28934
Babanly M. B., Mashadiyeva L. F., Babanly D. M. et al. Some aspects of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenid systems involving EMF Measurements (Review). Russian Journal of Inorganic Chemistry. 2019;64(13): 1649–1671. https://doi.org/10.1134/s0036023619130035
Menczel J., Grebowicz J. The handbook of differential scanning calorimetry: Techniques and lowmolecular mass materials. Elsevier Science; 2022. 858 p.
Gorochov O. Les composés Ag8MX6 (M = Si, Ge, Sn et X = S, Se, Te). Bulletin de la Société chimique de France. 1968; 2263–2275.
Prince A., Silver–germanium–selenium, in Ternary Alloys: A Comprehensive Compendium of Evaluated Con stitutional Data and Phase Diagrams.Stuttgart: Max Plank Inst.; 1992. 492 p.
Yusibov Y. A., Alverdiev I. D., Ibragimova F. S., Mamedov A. N., Tagiev D. B., Babanly M. B. Study and 3d modeling of the phase diagram of the Ag–Ge–Se system. Russian Journal of Inorganic Chemistry. 2017;62(9): 1223–1233. https://doi.org/10.1134/S0036023617090182
Yusibov Y. A., Alverdiev I. D., Mashadieva L. F., Babanly D. M., Mamedov A. N., Babanly M. B. Experimental study and 3d modeling of the phase diagram of the Ag–Sn–Se System. Russian Journal of Inorganic Chemistry. 2018;63(12): 1622–1635. https://doi.org/10.1134/S0036023618120227
Eulenberger G. Die kristallstruktur der tieftemperaturmodifikation von Ag8GeS6. Monatshefte Fur Chemie. 1977;108(4): 901–913. https://doi.org/10.1007/bf00898056
Carré D., Ollitrault Fichet R., Flahaut J. Structure de Ag8GeSe6b. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 1980;36(2): 245–249. https://doi.org/10.1107/S0567740880003032
Wang N. New data for Ag8SnS6 (canfeildite) and Ag8GeS6 (argyrodite). Neues Jahrb. Mineral., Monatsh;1978; 269–272.
Slade T. J., Gvozdetskyi V., Wilde J. M., Kreyssig A., Gati E., Wang L., Mudryk Y., Ribeiro R. A., Pecharsky V. K., Zaikina J. V., Bud’ko S. L., Canfield P. C. A low-temperature structural transition in canfieldite, Ag8SnS6, single crystals. Inorganic Chemistry. 2021;60(24): 19345–19355. https://doi.org/10.1021/acs.inorgchem.1c03158
Gulay L. D., Olekseyuk I. D., Parasyuk O. V. Crystal structure of b-Ag8SnSe6. Journal of Alloys and Compounds. 2002; 339(1): 113–117. https://doi.org/10.1016/s0925-8388(01)01970-3
Moroz M. V., Prokhorenko M. V. Determination of thermodynamic properties of saturated solid solutions of the Ag–Ge–Se system using EMF technique. Russian Journal of Electrochemistry.2015;51(7): 697–702. https://doi.org/10.1134/S1023193515070046
Moroz M. V., Prokhorenko M. V. Measurement of the thermodynamic properties of saturated solid solutions of compounds in the Ag-Sn-Se system by the EMF method. Russian Journal of Physical Chemistry A. 2015;89(8): 1325–1329. https://doi.org/10.1134/s0036024415080221
Moroz M. V., Prokhorenko M. V., Demchenko P. Yu., Reshetnyak O. V. Thermodynamic properties of saturated solid solutions of Ag7SnSe5Br and Ag8SnSe6 compounds in the Ag–Sn–Se–Br system measured by the EMF method. The Journal of Chemical Thermodynamics. 2017;106; 228–231. https://doi.org/10.1016/j.jct.2016.12.004
Alverdiev I. D., Yusibov Y. A., Bagkheri S. M., Imamalieva S. Z., Babanly M. B. Тhermodynamic study of Ag8GeSe6 by EMF with an Ag4RbI5 solid electrolyte Russian Journal of Electrochemistry. 2017;53(5): 551–554. https://doi.org/10.1134/S1023193517050032
Alverdiev I. D., Yusibov Y. A., Imamalieva S. Z., Babanly D. M. , Tagiev D. B. , Babanly M. B. Thermodynamic study of siver-tin selenides by the EMF method with Ag4rbi5 solid electrolyte. Russian Journal of Electrochemistry. 2019;55(5): 467–474. https://doi.org/10.1134/s1023193519050021
Hohne G. W. H. , Hemminger W. F. , Flammersheim H. J. Differential Scanning Calorimetry. Second Edition. Berlin: Springer; 2003. 300 p. https://doi.org/10.1007/978-3-662-06710-9_3
Morachevskiy A. Q. , Voronin Q. F. , Qeyderikh V. A., Kutsenok I. B. Electrochemical research methods in thermodynamics of metallic systems. Мoscow: ISK «Akademkniga» Publ.; 2003. 334 p. (In Russ.)
Babanly M. B., Yusibov Yu. A. Бабанлы М. Б., Юсибов Ю. А. Electrochemical methods in thermodynamics of inorganic systems. Baku: Elm Publ.; 2011. 306 p. (In Russ.)
Physical and chemical properties of semiconductor substances. Handbook. Novoselova A. V. and Lazereva V. B. (Eds.). Мoscow: Nauka Publ.; 1976. 339 p. (In Russ.)
Copyright (c) 2022 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.