Electrocrystallisation of Cu-Sn-TiO2 composite coatings in sulphuric acid electrolytes

Keywords: Electrocrystallisation, Formation of alloys, Composite coating, Pulsed electrolysis, Structure

Abstract

The aim of the article is to determine the peculiarities of electrochemical production of Cu–Sn–TiO2 composite coatings in sulphuric acid electrolytes with intermittent agitation under stationary and pulsed modes of electrolysis.

Linear voltammetry and static and pulsed chronopotentiometry were used to study the kinetic features of electrocrystallisation of Cu-Sn-TiO2 composite coatings in a sulphuric acid electrolyte with intermittent agitation. When the electrolyte was stirred, the cathodic potential shifted towards electropositive values. It was shown that after switching the agitation off, the value of the cathodic potential at which the copper-tin alloy forms at a cathodic current density of –0.013 A/cm2 was reached within 70 s and when using pulsed electrolysis, it was reached within 80 s. Scanning electron microscopy established that the most homogeneous and uniform Cu-Sn-TiO2 coatings were formed when pulsed electrolysis was used.

Intermittent agitation of the sulphuric acid electrolytes led to the formation of ordered multilayer structures consisting of microlayers of the Cu-Sn alloy and copper due to the intermittent elimination of diffusion limitations for the discharge of copper(II) ions when agitation was switched on, which resulted in suppression of the process of the underpotential deposition of tin.

Downloads

Download data is not yet available.

Author Biographies

Aliaksandr A. Kasach, Belarusian State Technological University 13a Sverdlova st., Minsk 220006, Belarus

Assistant at the Department
of Chemistry, Technology of Electrochemical
Production and Electronic Engineering Materials

Dzmitry S. Kharytonau, Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek , Krakow 30-239, Poland

PhD in Chemistry,
postdoctoral fellow at 

Ivan M. Zharskii, Belarusian State Technological University 13a Sverdlova st., Minsk 220006, Belarus

Cand. Sci. (Chem.), Associate
Professor at the Department of Chemistry

Irina I. Kurilo, Belarusian State Technological University 13a Sverdlova st., Minsk 220006, Belarus

Cand. Sci. (Chem.), Associate
Professor at the Department of Physical, Colloid, and
Analytical Chemistry

References

Karthik M., Abhinav J., Shankar K. V. Morphological and mechanical behaviour of Cu–Sn alloys –A review. Metals and Materials International. 2021: 1915–1946. https://doi.org/10.1007/s12540-020-00899-z

Souissi N., Sidot E., Bousselmi L., Triki E., Robbiola L. Corrosion behaviour of Cu-10Sn bronze in aerated NaCl aqueous media - Electrochemical investigation. Corrosion Science. 2007;49(8): 3333–3347. https://doi.org/10.1016/j.corsci.2007.01.013

Lehmann L., Höhlich D., Mehner T., Lampke T. Irregular electrodeposition of Cu-Sn alloy coatings in [emim]cl outside the glove box with large layer thickness. Coatings. 2021;11(3): https://doi.org/10.3390/coatings11030310

Jung M., Lee G., Choi J.. Electrochemical plating of Cu–Sn alloy in non-cyanide solution to substitute for Ni undercoating layer. Electrochimica Acta.2017;241: 229–236. https://doi.org/10.1016/j.electacta.2017.04.170

Wilks S. A., Michels H., Keevil C. W. The survival of escherichia coli O157 on a range of metal surfaces. International Journal of Food Microbiology. 2005;105(3): 445–454.

https://doi.org/10.1016/j.ijfoodmicro.2005.04.021

Grass G., Rensing C., Solioz M. Metallic copper as an antimicrobial surface. Applied and Environmental Microbiology. 2011;77(5): 1541–1547. https://doi.org/10.1128/AEM.02766-10

Chang T., Sepati M., Herting G., Leygraf C., Rajarao G. K., Butina K., Odnevall Wallinder I. A novel methodology to study antimicrobial properties of high-touch surfaces used for indoor hygiene applications-A study on Cu metal. PLoS One. 2021;16(2): e0247081. https://doi.org/10.1371/journal.pone.0247081

Chang T., Babu, R. P., Zhao W., Johnson C. M., Hedström P., Odnevall I., Leygraf C. High-resolution microscopical studies of contact killing mechanisms on copper-based surfaces. ACS Applied Materials & Interfaces. 2021;13(41): 49402–49413. https://doi.org/10.1021/acsami.1c11236

Walsh F. C. Low C. T. J. A review of developments in the electrodeposition of tin-copper alloys. Surface and Coatings Technology. 2016;304: 246–262. https://doi.org/10.1016/j.surfcoat.2016.06.065

Hutchison M. J. Scully J. R. Patina enrichment with SnO2 and its effect on soluble Cu cation release and passivity of high-purity Cu-Sn bronze in artificial perspiration. Electrochimica Acta. 2018;283: 806–817. https://doi.org/10.1016/j.electacta.2018.06.125

Survila A., Mockus Z., Kanapeckaitė S., Bražinskienė D., Juškėnas R. Surfactant effects in Cu–Sn alloy deposition. Journal of The Electrochemical Society. 2012;159(5): 296–302. https://doi.org/10.1149/2.084205jes

Juškėnas R., Mockus Z., Kanapeckaitė S., Stalnionis G., Survila A. XRD studies of the phase composition of the electrodeposited copper-rich Cu-Sn alloys. Electrochimica Acta. 2006;52(3): 928–935. https://doi.org/10.1016/j.electacta.2006.06.029

Survila A., Mockus Z., Kanapeckaitė S., Jasulaitienė V., Juškėnas R. Codeposition of copper and tin from acid sulphate solutions containing polyether sintanol DS-10 and benzaldehyde. Journal of applied electrochemistry. 2009;39(10): 2021–2026. https://doi.org/10.1007/s10800-009-9914-2

Kasach A. A., Kharitonov D. S., Makarova I. V., Wrzesińska A., Zharskii I. M., Kurilo I. I. Effect of thiourea on electrocrystallization of Cu–Sn alloys from sulphate electrolytes. Surface and Coatings Technology. 2020;399: 126137. https://doi.org/10.1016/j.surfcoat.2020.126137

Kasach A. A., Kharitonov D. S., Radchenko S. L., Zharskii I. M., Kurilo I. I. Effect of parameters of pulse electrolysis on electrodeposition of copper–tin alloy from sulfate electrolyte. Russian Journal of Electrochemistry. 2020;56(9): 744–753. https://doi.org/10.1134/S1023193520090049

Meudre C., Ricq L., Hihn J. Y., Moutarlier V., Monnin A., Heintz O. Adsorption of gelatin during electrodeposition of copper and tin-copper alloys from acid sulfate electrolyte. Surface and Coatings Technology. 2014;252: 93–101. https://doi.org/10.1016/j.surfcoat.2014.04.050

Nakanishi S., Sakai S. I., Nagai T., Nakato Y. Macroscopically uniform nanoperiod alloy multilayers formed by coupling of electrodeposition with current oscillations. The Journal of Physical Chemistry B. 2005;109(5): 1750–1755. https://doi.org/10.1021/jp045876x

Kharitonov D. S., Kasach A. A., Sergievich D. S., Wrzesińska A., Bobowska I., Darowicki K., Zielinski A., Ryl J., Kurilo I. I. Ultrasonic-assisted electrodeposition of Cu-Sn-TiO2 nanocomposite coatings with enhanced antibacterial activity. Ultrasonics Sonochemistry. 2021; 75: 1–11. https://doi.org/10.1016/j.ultsonch.2021.105593

Kasach A. A., Kharytonau D. S., Paspelau A. V., Ryl J., Sergievich D. S., Zharskii I. M., Kurilo I. I. Effect of TiO2 concentration on microstructure and properties of composite Cu–Sn–TiO2 coatings obtained by electrodeposition. Materials. 2021;14(20): 6179. https://doi.org/10.3390/ma14206179

Published
2022-05-30
How to Cite
Kasach, A. A., Kharytonau, D. S., Zharskii, I. M., & Kurilo, I. I. (2022). Electrocrystallisation of Cu-Sn-TiO2 composite coatings in sulphuric acid electrolytes. Condensed Matter and Interphases, 24(2), 220-226. https://doi.org/10.17308/kcmf.2022.24/9262
Section
Original articles