Термодинамика, кинетика и технология синтеза эпитаксиальных слоев карбида кремния на кремнии методом согласованного замещения атомов и его уникальные свойства. Обзор
Аннотация
В обзоре с единых позиций дается анализ нового метода роста эпитаксиальных пленок SiC на Si, основанного на согласованном замещении части атомов кремния в кристаллической решетке Si на атомы углерода. Изложена основная идея и теория нового метода синтеза эпитаксиальных пленок SiC на Si. Данный метод существенно отличатся от классических схем выращивания тонких пленок. Разработанный метод заключается в замене части атомов Si на C прямо внутри матрицы кремния, а не при помощи нанесения атомов на поверхность подложки. Метод позволяет решить одну из основных проблем гетероэпитаксии, а именно осуществить синтез низкодефектных и ненапряженных эпитаксиальных пленок при большом различии между параметрами решетки пленки и подложки.
По сути дела, впервые в мировой практике реализован метод согласованной замены атомов одного сорта другими прямо внутри исходного кристалла без разрушения его кристаллической структуры. Метод напоминает «генетический синтез» белковых структур в биологии. Качество структуры слоев, полученных данным методом, значительно превосходит качество пленок карбида кремния, выращенных на кремниевых подложках ведущими мировыми компаниями. Метод дешев и технологичен. Приведено сравнение нового метода роста с классическими методами роста тонких пленок. Изложен термодинамический и кинетический анализ процесса замещения атомов в твердой
фазе. На примере образования SiC описаны механизмы протекания широкого класса гетерогенных химических реакций между газовой фазой и твердым телом. В обзоре приведено описание нового метода синтеза эпитаксиальных слоев SiC на монокристаллических подложках сапфира, в основе которого лежит метод согласованного замещения атомов. Показано, что на границе раздела SiC/Si при данном методе роста возникает интерфейснй слой с нестандартными оптическими и электрофизическими свойствами. Необычные свойства вызваны схлопыванием (усадкой) материала, при котором карбид кремния, как новая фаза, отделяется от кремниевой матрицы. Кремний
подвергается аномально сильному сжатию. В результате подобной усадки каждая пятая химическая связь SiC полностью согласуется с каждой четвертой связью Si, остальные связи деформируются. Последнее приводит к изменению структуры поверхностных зон SiC, прилегающего к Si, и его превращению в «магнитный полуметалл». Эпитаксия пленок SiC на Si за счет согласованного замещения половины атомов Si на атомы C при отсутствии дислокаций несоответствия решеток обеспечивает высокое кристаллическое совершенство пленок SiC. Приводится описание наблюдаемых в структурах SiC/Si при комнатной температуре, в слабых магнитных полях двух квантовых эффектов – эффекта Мейснера–Оксенфельда и эффекта возникновения осцилляций Ааронова–Бома в полевых
зависимостях статической магнитной восприимчивости. Приводится описание обнаруженного явления фазового перехода носителей заряда в когерентное состояние с одновременным возникновением гигантского значения диамагнетизма порядка (1/4π) в слабых магнитных полях, что связвается с возникновением сверхпроводящео состояния.
Скачивания
Литература
Kukushkin S. A., and Osipov A. V. Nanoscale single-crystal silicon carbide on silicon and unique properties of this material. Inorganic Materials. 2021;57(13): 1319–1329. https://doi.org/10.1134/S0020168521130021
Kukushkin S. A., Osipov A. V. Epitaxial silicon carbide on silicon. Method of coordinated substitution of atoms (A Review). Russian Journal of General Chemistry. 2022;92: 584–610. https://doi.org/10.1134/S1070363222040028
Kukushkin S., Osipov A., Redkov A. SiC/Si as a new platform for growth of wide-bandgap semiconductors. In: Mechanics and Control of Solids and Structures. Advanced Structured Materials. V. A. Polyanskiy, A. K. Belyaev (eds.). Vol. 164. Springer; 2022. pp. 335–367. https://doi.org/10.1007/978-3-030-93076-9
Kukushkin S. A., Osipov A. V. Feoktistov N. A. Chemical self-assembly of a single-crystal SiC film on a silicon substrate: a new method of directed nucleation. Rossiiskii khimicheskii zhurnal. 2013;57(6): 36–47. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=24069701
Kukushkin S. A., Osipov A. V. Topical review. Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films. Journal of Physics D: Applied Physics. 2014;47: 313001-313001-41. https://doi.org/10.1088/0022-3727/47/31/313001
Kukushkin S. A., Osipov A. V., Feoktistov N. A. Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review. Physics of the Solid State. 2014;56: 1507–1535. https://doi.org/10.1134/S1063783414080137
Takahashi K., Yoshikawa A., Sandhu A. (eds.). Wide bandgap semiconductors. Springer-Verlag Berlin and Heidelberg GmbH & Co. K; 2007. 470 p. https://doi.org/10.1007/978-3-540-47235-3
Nishino S., Powell J.A., Will H.A. Production of large-area single-crystal wafers of cubic SiC for semiconductor devices. Applied Physics Letters. 1983;42(5): 460–462. https://doi.org/10.1063/1.93970
Kukushkin S. A., Osipov A. V., Bessolov V. N., Medvedev B. K., Nevolin V. K., Tcarik K. A. Substrates for epitaxy of gallium nitride: new materials and techniques. Reviews on Advanced Materials Science. 2008;17: 1–32. Available at: https://www.ipme.ru/ejournals/RAMS/no_11708/kukushkin.pdf
Severino A., Locke C., Anzalone R., Camarda M., Piluso N., La Magna A., Saddow S., Abbondanza G., D’Arrigo G., La Via F. 3C-SiC film growth on Si substrates. ECS Transactions. 2011;35(6): 99–116. https://doi.org/10.1149/1.3570851
Ferro G. 3C-SiC heteroepitaxial growth on silicon: The quest for holy grail. Critical Reviews in Solid State and Materials Sciences. 2015;40(1): 56–76. https://doi.org/10.1080/10408436.2014.940440
Kukushkin S. A., Osipov A. V. New method for growing silicon carbide on silicon by solid-phase epitaxy: Model and experiment. Physics of the Solid State. 2008;50: 1238–1245. https://doi.org/10.1134/S1063783408070081
Kukushkin S. A., Osipov A. V., Feoktistov N. A. A method of manufacturing an article containing a silicon substrate with a silicon carbide film on its surface*. Patent RF, No. 2363067. Publ. 27.07.2009; bul. No. 21. (In Russ.)
Kukushkin S. A., Osipov A. V. Quantum mechanical theory of epitaxial transformation of silicon to silicon carbide. Journal of Physics D: Applied Physics. 2017;50 (46): 464006 (7pp). https://doi.org/10.1088/1361-6463/AA8F69
Kukushkin S. A., Osipov A. V. Thin-film heteroepitaxy by the formation of the dilatation dipole ensemble. Doklady Physics. 2012;57: 217–220. https://doi.org/10.1134/S1028335812050072
Kukushkin S. A., Osipov A. V. A new mechanism of elastic energy relaxation in heteroepitaxy of monocrystalline films: Interaction of point defects and dilatation dipoles. Mechanics of Solids. 2013;48: 216–227. https://doi.org/10.3103/S0025654413020143
Kukushkin S. A. and Osipov A. V. A new method for the synthesis of epitaxial layers of silicon carbide on silicon owing to formation of dilatation dipoles. Journal of Applied Physics. 2013;113(2): 4909-1-4909-7. https://doi.org/10.1063/1.4773343
Kukushkin S. A., Osipov A. V. Anisotropy of the solid-state epitaxy of silicon carbide in silicon. Semiconductors. 2013;47: 1551–1555. https://doi.org/10.1134/S1063782613120129
Kukushkin S. A., Osipov A. V. First-order phase transition through an intermediate state Physics of the Solid State. 2014;56: 792–800. https://doi.org/10.1134/S1063783414040143
Kukushkin S. A., Osipov A. V. Mechanism of formation of carbon-vacancy structures in silicon carbide during its growth by atomic substitution. Physics of the Solid State. 2018;60: 1891–1896. https://doi.org/10.1134/S1063783418090184
Kukushkin S. A., Osipov A. V., Telyatnik R. S. Elastic interaction of point defects in cubic and hexagonal crystals. Physics of the Solid State. 2016;58: 971–980. https://doi.org/10.1134/S1063783416050140
Eshelby J. D. The continuum theory of dislocations in crystals. New York: Academic Press; 1956. pp. 79–144.
Lifshits I. M., Rozentsveig L. N. On the construction of the Green tensor for the basic equation of the theory of elasticity in the case of an unbounded elastically anisotropic medium*. Journal of Experimental and Theoretical Physics. 1947;17(9): 783–791. (In Russ.)
Kuz’michev S. V., Kukushkin S. A., Osipov A. V. Elastic interaction of point defects in crystals with cubic symmetry. Mechanics of Solids. 2013;48: 431–438. https://doi.org/10.3103/S0025654413040110
Sangwal K. Etching of crystals: Theory, experiment and application. North-Holland: 1987. 497.
Kukushkin S. A., Osipov A. V. Thin-film condensation processes *. Physics-Uspekhi (1998),41(10): 983–1014. https://doi.org/10.1070/PU1998v041n10ABEH000461
Kukushkin S. A., Slezov V. V. Disperse systems on the surface of solids (evolutionary approach): mechanisms of thin film formation. St. Petersburg: Nauka Publ.; 1996. 304. (In Russ.)
Zhukov S. G., Kukushkin S. A., Lukyanov A. V., Osipov A. V., Feoktistov N. A. Method of manufacturing products containing a silicon substrate with a silicon carbide film on its surface*. Patent RF: No. 2522812. Publ. 20.07.2014, bul. No. 20. (In Russ.)
Kukushkin S. A., Osipov A. V. First-order phase transition through an intermediate state. Physics of the Solid State. 2014;56: 792–800. https://doi.org/10.1134/S1063783414040143
Kukushkin S. A., Osipov A. V., Soshnikov I.P. Growth of Epitaxial SiC Layer on Si (100) Surface of n- and p-type of Conductivity by the Atoms Substitution Method. Reviews on Advanced Materials Science. 2017;52: 29-42. Available at: http://www.ipme.ru/ejournals/RAMS/no_15217/05_15217_kukushkin.pdf
Kukushkin S. A. Nucleation of pores in brittle solids under load. Journal of Applied Physics. 2005;98: 033503-1–033503-12.https://doi.org/10.1063/1.195713132. Geguzin Ya. E. Diffusion zone. Moscow: Science Publ.; 1979. 34 p. (In Russ.)
Kelly A., Groves G. W. Crystallography and crystal defects. London: Longman; 1970. 428 p.
Kukushkin S. A., Osipov A. V. A quantummechanical model of dilatation dipoles in topochemical synthesis of silicon carbide from silicon. Physics of the Solid State. 2017;59: 1238–1241. https://doi.org/10.1134/S1063783417060130
Kukushin S. A., Osipov A. V. Phase equilibrium in the formation of silicon carbide by topochemical conversion of silicon. Physics of the Solid State. 2016;58: 747–751. https://doi.org/10.1134/S1063783416040120
Kukushkin S. A., Osipov A. V. The equilibrium state in the Si-O-C ternary system during SiC growth by chemical substitution of atoms. Technical Physics Letters. 2015;41: 259–262. https://doi.org/10.1134/S1063783416040120
Grudinkin S. A., Golubev V. G., Osipov A. V., Feoktistov N. A., Kukushkin S. A. Infrared spectroscopy of silicon carbide layers synthesized by the substitution of atoms on the surface of single-crystal silicon. Physics of the Solid State. 2015;57: 2543–2549. https://doi.org/10.1134/S1063783415120136
Kukushkin S. A., Osipov A. V. Drift mechanism of mass transfer on heterogeneous reaction in crystalline silicon substrate. Physica B: Condensed Matter. 2017;512(1): 26–31. https://doi.org/10.1016/j.physb.2017.02.018
Kidalov V. V., Kukushkin S. A., Osipov A. V., Redkov A. V., Grashchen-ko A. S., Soshnikov I. P., Boiko M. E., Sharkov M. D., Dyadenchuk A. F. Properties of SiC films obtained by the method of substitution of atoms on porous silicon. ECS Journal of Solid State Science and Technology. 2018. 7(4): P158–P160. https://doi.org/10.1149/2.0061804jss
Kukushkin S. A., Osipov A. V., Osipova E. V. Mechanism of molecule migration of carbon and silicon monoxides in silicon carbide crystal. Materials Physics and Mechanics. 2019;42: 178–182. https://doi.org/10.18720/MPM.4222019_3
Kukushkin S. A., Osipov A. V. Mechanism of iffusion of carbon and silicon monooxides in a cubic silicon carbide crystal. Phys. Solid State. 2019;61: 2338–2341. https://doi.org/10.1134/S1063783419120242
Редьков А. В., Гращенко А. С., Кукушкин С. А., Осипов А.В. , Котляр К.П. , Лихачев А. И. , Нащекин А. В., Сошников И.П. Эволюция ансамбля микропор в структуре SiC/Si в процессе роста методом замещения атомов. ФТТ. 2019; 61(3): 2334–2337. DOI: 10.1134/S1063783419030272.
Grashchenko A. S. , Kukushkin S. A. , Osipov A. V., Redkov A. V. Vacancy growth of monocrystalline SiC from Si by the method of selfconsistent substitution of atoms. Catalysis Today. 2022;397–399: 375–378. https://doi.org/10.1016/J.CATTOD.2021.08.012
Grashchenko A. S., Kukushkin S. A., Osipov A. V. Coating of a nanostructured profiled Si surface with a SiC layer. Technical Physics Letters. 2020;46: 1012–1015. https://doi.org/10.1134/S1063785020100235
Smirnov V. K., Kibalov D. S., Orlov O. M., Graboshnikov V. V. Technology for nanoperiodic doping of a metal-oxide-semiconductor field-effect transistor channel using a self-forming wave-ordered structure. Nanotechnology. 2003;14: 709–715. https://doi.org/10.1088/0957-4484/14/7/304
Tang X., Wongchotigul K., Spencer M. G. Optical waveguide formed by cubic silicon carbide on sapphire substrates. Applied Physics Letters. 1991;58: 917. https://doi.org/10.1063/1.104476
Sywe B. S., Yu Z. J., Burckhard S., Edgar J. H., Chaudhuri J. Epitaxial growth of SiC on sapphire substrates with an AlN buffer layer. Journal of The Electrochemical Society. 1994;141: 510. https://doi.org/10.1149/1.2054756
McArdle T. J., Chu J. O., Zhu Y., Liu Z., Krishnan M., Breslin C. M., Dimitrakopoulos C., Wisnieff R., Grill A. Multilayer epitaxial graphene formed by pyrolysis of polycrystalline silicon-carbide grown on c-plane sapphire substrates. Applied Physics Letters. 2011;98: 132108. https://doi.org/10.1063/1.3575202
Cheng L., Steckl A. J., Scofield J. SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor. IEEE Transactions on Electron Devices. 2003;50: 2159. https://doi.org/10.1109/TED.2003.816106
Li J. C, Batoni P., Tsu R. Synthesis and characterization of 4H-SiC on C-plane sapphire by C60 and Si molecular beam epitaxy. Thin Solid Films. 2010;518(6): 1658. https://doi.org/10.1016/j.tsf.2009.11.088
Luong T. T., Tran B. T., Ho Y. T., Wei T. W., Wu Y. H., Yen T. Ch., Wei L. L., Maa J. Sh., Chang E. Yi. 2H-silicon carbide epitaxial growth on c-plane sapphire substrate using an AlN buffer layer and effects of surface pre-treatments. Electronic Materials Letters. 2015;11: 352–359. https://doi.org/10.1007/s13391-015-4208-9
Beisenov R., Ebrahim R., Mansurov Z. A., Tokmoldin S. Zh, Mansurov B. Z., Ignatiev A. Growth of 3C-SiC films on Si (111) and sapphire (0001) substrates by MOCVD. Eurasian Chemico-Technological Journal. 2013;15(1): 25. https://doi.org/10.18321/ectj136
Chu J. O., Dimitrakopoulos C. D., Grill A., McArdle T. J., Saenger K. L., Wisnieff R. L., Zhu. Yu. Epitaxial growth of silicon carbide on sapphire. Patent US: No. US 2012/0112198 A1. Pub. Date: May 10, 2012. Available at: URL:https://patentimages.storage.googleapis.com/91/9f/23/96f2953b645053/US20120112198A1.pdf
Shibata K., Harada Sh., Ujihara T. 3C-SiC crystal on sapphire by solution growth method. Materials Science Forum. 2015;821–823: 185. https://doi.org/10.4028/www.scientific.net/MSF.821-823.185
Kukushkin S. A., Osipov A. V. Mechanisms of epitaxial growth of SiC films by the method of atom substitution on the surfaces (100) and (111) of Si single crystals and on surfaces of Si films grown on single crystals Al2O3. IOP Conference Series: Materials Science and Engineering. 2018;387: 012044-1-5. https://doi.org/10.1088/1757-899X/387/1/012044
Kukushkin S. A., Osipov A. V., Redkov A. V., Grashchenko A. S., Feoktistov N. A., Fedotov S. D., Statsenko V. N., Sokolov E. M., Timoshenkov S. P. A new method for synthesis of epitaxial films of silicon carbide on sapphire substrates (a-Al2O3). Reviews on Advanced Materials Science. 2018;57(1): 82-96. https://doi.org/10.1515/rams-2018-0050
Cristoloveanu S. , Li Sh. S. Electrical characterization of silicon-on-insulator materials and devices. In: Springer Science and Business Media. 1995;305: 381. https://doi.org/10.1007/978-1-4615-2245-4
Munteanu D., Cristoloveanu S., Rozeau O., Jomaah J., Boussey J., Wetzel M., Houssaye P. de la, Lagnado L. Characterization of silicon-on-sapphire material and devices for radio frequency applications. Journal of The Electrochemical Society. 2001;148(4): 218. https://doi.org/10.1149/1.1355693
Colinge J. P. SOI CMOS for high-temperature applications. In: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices. Hemment P. L. F., Lysenko V. S., Nazarov A. N. (eds.). NATO Science Series. Vol. 73. Dordrecht: Springer; 2000. pp. 249–256. https://doi.org/10.1007/978-94-011-4261-8_24
Celler G. K., Cristoloveanu S. Frontiers of silicon-on-insulator. Journal of Applied Physics. 2003; 93(9): 4955–4978. https://doi.org/10.1063/1.1558223
Sokolov E. M., Fedotov S. D., Statsenko V. N., Timoshenkov S. P., Emelyanov A. V. Study of the structural properties of silicon-on-sapphire layers in hydride-chloride vapor-phase epitaxy. Semiconductors. 2017;51(13): 1692–1697. https://doi.org/10.1134/S1063782617130127
Bessolov V. N., Konenkova E. V., Kukushkin S. A., Osipov A. V., Rodin S. N. Semipolar gallium nitride on silicon: technology and properties. Reviews on Advanced Materials Science. 2014;38(1): 75–93. https://www.ipme.ru/e-journals/RAMS/no_13814/08_13814_kukushkin.pdf
Kalinkin I. P., Kukushkin S. A., Osipov A. V. Method for processing the surface of a single-crystal silicon wafer*. Patent RF: No. 2323503. Publ. 04/27/2008, bul. No. 12.
Kalinkin I. P., Kukushkin S. A., Osipov A. V. Effect of chemical treatment of a silicon surface on the quality and structure of silicon-carbide epitaxial films synthesized by atom substitution. Semiconductors. 2018;52: 802–808. https://doi.org/10.1134/S1063782618060118
Grashchenko A. S., Kukushkin S. A., Osipov A. V., Redkov A. V. Formation of composite SiC-C coatings on graphite via annealing Si-melt in CO. Surface & Coatings Technology.2021;423(15): 127610. https://doi.org/10.1016/j.surfcoat.2021.127610
Grashchenko A. S., Kukushkin S. A., Osipov A. V., Redkov A. V. The mechanical properties of a SiC composite coating on graphite produced by the atomsubstitution method. Technical Physics Letters. 2022; 48, 62–65. https://doi.org/10.1134/S1063785022030038
Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77(18): 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
Fischer-Cripps A. C. Nanoindentation. (Third Edition) Springer; 2004. 279 p. https://doi.org/10.1115/1.1704625
Kukushkin S. A., Lukyanov A. V., Osipov A. V.,Feoktistov N. A. Epitaxial silicon carbide on a 6≤ silicon wafer. Technical Physics Letters. 2014;40: 36–39. https://doi.org/10.1134/S1063785014010088
Egorov V. K., Egorov E. V., Kukushkin S. A., Osipov A. V. Structural heteroepitaxy during topochemical transformation of silicon to silicon carbide. Physics of the Solid State. 2017;59: 773–779. https://doi.org/10.1134/S1063783417040072
Grudinkin S. A., Kukushkin S. A., Osipov A. V., Feoktistov N. A. IR spectra of carbon-vacancy clusters in the topochemical transformation of silicon into silicon carbide. Physics of the Solid State. 2017;59: 2430–2435. https://doi.org/10.1134/S1063783417120186
Kukushkin S. A., Nussupov K. K., Osipov A. V.,
Beisenkhanov N. B., Bakranova D. I. X-ray reflectometry and simulation of the parameters of SiC epitaxial films on Si(111), grown by the atomic substitution method. Physics of the Solid State. 2017;59: 1014–1026. https://doi.org/10.1134/S1063783417050195
Kukushkin S. A., Nussupov K. Kh., Osipov A. V., Beisenkhanov N. B., Bakranova D. I. Structural properties and parameters of epitaxial silicon car-bide films, grown by atomic substitution on the highresistance (111) oriented silicon. Superlattices and Microstructures. 2017;111: 899–911. https://doi.org/10.1016/j.spmi.2017.07.050
Benemanskaya G. V., Dementev P. A., Kukushkin S. A., Lapushkin M. N., Osipov A. V., Senkovskiy B., Timoshnev S. N. Photoemission study of nano SiC epitaxial layers synthesized by a new method of theatom substitution in Si crystal lattice. Materials Physics and Mechanics. 2015;22(2): 183–190. Available at: https://ipme.ru/e-journals/MPM/no_22215/MPM222_09_kukushkin.pdf
Kukushkin S. A., Benemanskaya G. V., Dementev P. A., Senkovskiy B., Timoshnev S. N. Synchrotron-radiation photoemission study of the ultrathin Ba/3C–SiC (111) interface. Journal of Physics and Chemistry of Solids. 2016;90: 40–44. https://doi.org/10.1016/j.jpcs.2015.10.018
Benemanskaya G. V., Dementev P. A., Kukushkin S. A., Osipov A. V., Timoshnev S. N. Carbon-based aromatic-like nanostructures on the vicinal SiC surfaces induced by Ba adsorption. ECS Journal of Solid State Science and Technology. 2019;8(6): M53–M59. https://doi.org/10.1149/2.0031906jss
Benemanskaya G. V., Dement’ev P. A., Kukushkin S. A., Osipov A. V., Timoshnev S. N. A new type of carbon nanostructure on a vicinal SiС(111)-8° surface. Technical Physics Letters. 2019;45: 201–204. https://doi.org/10.1134/S1063785019030039
Benemanskaya G. V., Kukushkin S. A., Dementev P. A. Aromatic-like carbon nanostructures created on the vicinal SiC surfaces. Physics of the Solid State. 2019;61(12): 2455–2458. https://doi.org/10.1134/S1063783419120059
Kukushkin S. A., Osipov A. V. Anisotropy of the solid-state epitaxy of silicon carbide in silicon. Semiconductors. 2013;47: 1551–1555. https://doi.org/10.1134/S1063782613120129
Kitaev Y. E., Kukushkin S. A., Osipov A. V. Evolution of the symmetry of intermediate phases and their phonon spectra during the topochemical conversion of silicon into silicon carbide. Physics of theSolid State. 2017;59: 28–33. https://doi.org/10.1134/S1063783417010164
Kitaev Y. E., Kukushkin S. A., Osipov A. V., Redkov A. V. A new trigonal (rhombohedral) SiC phase: ab initio calculations, a symmetry analysis and the Raman spectra. Physics of the Solid State. 2018;60: 2066–2071. https://doi.org/10.1134/S1063783418100116
Kukushkin S. A., Osipov A. V. The optical properties, energy band structure, and interfacial conductance of a 3C-SiC(111)/Si(111) heterostructure grown by the method of atomic substitution. Technical Physics Letters. 2020;46: 1103–1106. https://doi.org/10.1134/S1063785020110243
Kukushkin S. A., Osipov A. V. Anomalous properties of the dislocation-free interface between Si (111) substrate and 3C-SiC (111) epitaxial layer. Materials. 2021;14(78): 1–12. https://doi.org/10.3390/ma14010078
Virojanadara C., Hetzel M., Johansson L. I., Choyke W. J., Starke U. Electronic and atomic structure of the 4H-SiC(1102) - c(2 ¥ 2) surface. Surface Science. 2008;602 (15): 525–533. https://doi.org/10.1016/j.susc.2007.11.012
Santoni A., lancok J., Dhanak V. R., loreti S., Miller G., Minarini C. A valence-band and core-level photoemission study of a-SixC1-x thin films grown by low-temperature low-pressure chemical vapour deposition. Applied Physics A. 2005;81: 991–996. https://doi.org/10.1007/s00339-004-2976-4
Sieber N., Seyller Th., Ley L., James D., Riley J. D., Leckey R. C. G. Synchrotron x-ray photoelectron spectroscopy study of hydrogenterminated 6H-SiC{0001} surfaces. Physical Review B. 2003;67(20): 205304-1-13. https://doi.org/10.1103/PhysRevB.67.205304
King S. W., Nemanich R. J., Davis R. F. Photoemission investigation of the Schottky barrier at the Sc/3C-SiC (111) interface. Physica Status Solidi (b). 2015;252(2): 391–396. https://doi.org/10.1002/pssb.201451340
Watcharinyanon S., Johansson L. I., Xia C., Virojanadara C. Changes in structural and electronic properties of graphene grown on 6H-SiC(0001) induced by Na deposition. Journal of Applied Physics. 2012; 111:083711-1-6. https://doi.org/10.1063/1.4704396
Maiti J., Kakati N., Lee S. H., Yoon Y. S.Fluorination of multiwall carbon nano-tubes by a mild fluorinating reagent HPF6. Journal of Fluorine Chemisty. 2012;135: 362–366. https://doi.org/10.1016/j.jfluchem.2011.10.004
Flesch R., Serdaroglu E., Blobner F., Feulner P., Brykalova X. O., Pavlychev A. A., Kosugid N., Rühl E. Gas-to-solid shift of C 1s-excited benzene. Physical Chemistry Chemical Physics. 2012;14(26): 9397–9402. https://doi.org/10.1039/C2CP23451C
Kong M. J., Teplyakov A. V., Lyubovitsky J. G., Bent S. F. NEXAFS studies of adsorption of benzene on Si(100)-2×1. Surface Science. 1998;411(3): 286–293. https://doi.org/10.1016/S0039-6028(98)00336-7
Makarova A. A., Grachova E. V., Krupenya D. V., Vilkov O., Fedorov A., Usachov D., Generalov A., Koshevoy I. O., Tunik S. P., Rühl E., Laubschat C., Vyalikh D. V. Insight into the electronic structure of the supramolecular “rods-in-belt” AuI-CuI and AuI-AgI self-assembled complexes from X-ray photoelectron and absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena. 2015;192: 26–34. https://doi.org/10.1016/j.elspec.2014.01.004
Kang C., Tang J., Li L., Pan H., Pengshou X., Wei S., Chen X., Xu X. In situ study on the electronic structure of graphene grown on 6H–SiC (0001) with synchrotron radiation photoelectron spectroscopy. Applied Surface Science. 2012; 258(6): 2187–2191. https://doi.org/10.1016/j.apsusc.2011.02.068
Bagraev N. T., Kukushkin S. A., Osipov A. V., Romanov V. V., Klyachkin L. E., Malyarenko A. M.,Khromov V. S. agnetic properties of thin epitaxial SiC layers grown by the atom-substitution method on single-crystal silicon surfaces. Semiconductors. 2021;55: 137–145. https://doi.org/10.1134/S106378262102007X
Bagraev N. T., Kukushkin S. A., Osipov A. V. et al. Phase transitions in silicon-carbide epitaxial layers grown on a silicon substrate by the method of the coordinated substitution of atoms. Semiconductors. 2022;56: 321–324. https://doi.org/10.1134/S1063782622070016
Somayazulu M., Ahart M., Mishra A. K., Geballe Z. M., Baldini M., Meng Y., Struzhkin V. V., Hemley R. J. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Physical Review Letters. 2019;122(2): 027001. https://doi.org/10.1103/PhysRevLett.122.027001
Thapa D. K., Islam S., Saha S. K., Mahapatra P. S., Bhattacharyya B., Sai T. P., Mahadevu R., Patil S., Ghosh A., Pandey A. Coexistence of diamagnetism and vanishingly small electrical resistance at ambient temperature and pressure in nanostructures. Superconductivity (cond-mat.supr-con.). 2019; arXiv:1807.08572. https://doi.org/10.48550/arXiv.1807.08572
Snider E., Dasenbrock-Gammon N., McBride R., Debessai M., Vindana H., Vencatasamy K., Lawler K. V., Salamat A., Dias R. P. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature. 2020;586: 373–377. https://doi.org/10.1038/s41586-020-2801-z
Markov L. K., Kukushkin S. A., Smirnova I. P., Pavlyuchenko A. S.,. Grashchenko A. S, Osipov A. V., Svyatets G. V., Nikolaev A. E., Sakharov A. V., Lundin V. V., Tsatsulnikov A. F. A light-emitting diode based on AlInGaN heterostructures grown on SiC/Si substrates and its fabrication technology. Technical Physics Letters. 2022;48: 31–34. https://doi.org/10.1134/S1063785022020043
Copyright (c) 2022 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.