Роль химического состава сплавов палладия в их водородопроницаемости
Аннотация
Целью статьи было выявление роли легирующего компонента в сплавах палладия на параметры водородопроницаемости.
Методами циклической вольтамперометрии и катодно-анодной хроноамперометрии исследовано электрохимическое поведение холоднокатаных сплавов систем Pd-5Pb, Pd-6Ru и Pd-7Y (мас. %) в процессах инжекции и экстракции атомарного водорода в деаэрированном водном растворе 0.1 М H2SO4.
Выявлена роль свинца, рутения и иттрия в процессах внедрения и ионизации атомарного водорода. Данные вольтамперометрии и хроноамперометрии свидетельствуют о более высокой скорости ионизации для сплава Pd-6Ru. Параметры водородопроницаемости, рассчитанные по катодным спадам тока, показывают, что водородопроницаемость сплавов изменяется в ряду Pd-6Ru > Pd-7Y > Pd-5Pb. Эффективная константа скорости инжекции для всех сплавов совпадает в пределах ошибки измерений, тогда как эффективная константа скорости экстракции атомарного водорода выше для Pd–5Pb. Предельная растворимость рутения в сплаве Pd-6Ru способствует пассивации межзеренных границ в сплаве избыточным рутением, оставляя преимущественное движение атомарного водорода только по телу зерна. Это приводит к более высокой водородопроницаемости
Скачивания
Литература
Chen W. H., Chen C. Y. Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Applied Energy. 2020:258: 114078. https://doi.org/10.1016/j.apenergy.2019.114078
Fan L., Li C., Aravind P., Cai W., Han M., Brandon N. Methane reforming in solid oxide fuel cells: challenges and strategies. Journal of Power Sources. 2022:538: 231573. https://doi.org/10.1016/j.jpowsour.2022.231573
Shafiev D. R., Trapeznikov A. N., Hokhonov A. A., … Subcheva E. N. Methods for obtaining hydrogen on an industrial scale. Comparative analysis. Uspehi v himii i himicheskoj tehnologii. 2020:34(12): 53–57. (In Russ.). Available at: https://elibrary.ru/item.asp?id=44712152
Ockwig N. W., Nenoff T. M. Membranes for hydrogen separation. Chemical Reviews. 2007:107(10): 4078–4110. https://doi.org/10.1021/cr0501792
Shahbaz M., Al-Ansar T., Aslam M., … McKay G. A state of the art review on biomass processing and conversion technologies to produce hydrogen and its recovery via membrane separation. International Journal of Hydrogen Energy. 2020:45(30): 15166–15195. https://doi.org/10.1016/j.ijhydene.2020.04.009
Lin Y. M., Liu S. L., Chuang C. H., Chu Y. T. Effect of incipient removal hydrogen through palladium membrane on the conversion of methane steam reforming experimental and modelling. Catalysis Today. 2003:82(1-4): 127–139. https://doi.org/10.1016/S0920-5861(03)00212-8
Rahimpour M. R., Samimi F., Babapoor A., Tohidian T., Mohebi S. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review. Chemical Engineering and Processing: Process Intensification. 2017:121(1): 24–49. https://doi.org/10.1016/j.cep.2017.07.021
Tovbin Yu. K., Votyakov E. V. Effect of interstitial hydrogen on the properties of palladium membranes. Russian Journal of Physical Chemistry A. 2001:75(4): 640–645. Available at: https://elibrary.ru/item.asp?id=13382490
Roshan N., Gorbunov S., Chistov E., Karelin F., Kuterbekov K., Abseitov Ye. Palladiuum-based membranes for separation of high-purity hydrogen. Perspektivnye Materialy. 2020:6: 47–57. https://doi.org/10.30791/1028-978X-2020-6-47-57 (In Russ.)
Magnone E., Shin M. C., Lee J. I., Park J. H. Relationship between hydrogen permeability and the physical-chemical characteristics of metal alloy membranes. Journal of Membrane Science. 2023:674: 121513. https://doi.org/10.1016/j.memsci.2023.121513
Livshits A. I. The hydrogen transport through the metal alloy membranes with a spatial variation of the alloy composition: Potential diffusion and enhanced permeation. International Journal of Hydrogen Energy. 2017:42(18): 13111–13119. https://doi.org/10.1016/j.ijhydene.2017.04.016
Burhanov G. S., Gorina N. B., Kolchugina N. B., Roshan N. R., Slovetsky D. I., Chistov E. M. Palladiumbased alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures. Platinum Metals Review. 2011:55(1): 3–12. https://doi.org/10.1595/147106711X540346
Avdyuhina V. M., Burhanov G. S., Nazmutdinov A. Z., Roshan N. R. Hydrogen and vacancy induced structural and phase transformations in Pd-Ru alloy foils. Perspektivnye Materialy. 2011:11: 68–72. (In Russ.). Availably at: https://www.elibrary.ru/item.asp?id=17561288
Pogorelova D. A., Morozova N. B., Vvedenskii A. V. The influence of ruthenium, yttrium and lead on the hydrogen permeability of palladium-based alloys*. Elektrohimija i korrozija metallov i splavov: Proc. All-Rus. Conf., 4-5 Octjber 2023, Voronezh: VSU Publ.; 2023. p. 47-79. (In Russ.)
Hubkowska K., Koss U., Lukaszewsk M., Czerwinski A. Hydrogen electrosorption into Pd-rich Pd-Ru alloys. Journal of Electroanalytical Chemistry. 2013:704: 10–18. https://doi.org/10.1016/j.jelechem.2013.06.004
Ryi S. K., Li A., Lim C. J., Grace J. R. Novel nonalloy Ru/Pd composite membrane fabricated by electroless plating for hydrogen separation. International Journal of Hydrogen Energy. 2011:36(15): 9335–9340. https://doi.org/10.1016/j.ijhydene.2010.06.014
Gade S. K., Keeling M. K., Davidson A. P., Hatlevik O., Way J. D. Palladium–ruthenium membranes for hydrogen separation fabricated by electroless codeposition. International Journal of Hydrogen Energy. 2009:34(15). 6484–6491. https://doi.org/10.1016/j.ijhydene.2009.06.037
Liu J., Bellini S., deNooijer N. C. A., … Caravella A. Hydrogen permeation and stability in ultra-thin Pd-Ru supported membranes. International Journal of Hydrogen Energy. 2020:45(12): 7455–7467. https://doi.org/10.1016/j.ijhydene.2019.03.212
Hughes D. T., Harris I. R. Hydrogen diffusion membranes based on some palladium-rare earth solid solution alloys. Zeitschrift für Physikalische Chemie. 1979:117(117): 185–193. https://doi.org/10.1524/zpch.1979.117.117.185
Hughes D. T., Evans J., Harris I. R. The The influence of order on hydrogen diffusion in the solid solution alloys Pd-5.75at.%Ce and Pd-8at.%Y. Journal of the Less-Common Metals. 1980:74(2): 255–262. https://doi.org/10.1016/0022-5088(80)90160-5
Wang D., Flanagan T. B., Shanahan K. Diffusion of H through Pd–Y alloy membranes. Journal of Membrane Science. 2016:499: 452-461. https://doi.org/10.1016/j.memsci.2015.10.020
Wileman R. C. J., Doyle M., Harris I. R. A Comparison of the permeability, solubility, and diffusion characteristics of H and D in a palladium–8% yttrium and palladium–25% silver solid solution alloy. Zeitschrift für Physikalische Chemie. 1989:164: 797–802. https://doi.org/10.1524/zpch.1989.164.part_1.0797
Phase diagrams of binary metal systems*. Handbook in 3 volumes / N. N. Lyakishev (eds.). Moscow: Izd-vo Mashinostroenie Publ., 1996. 872 p. (In Russ.)
Morozova N. B., Dontsov A. I., Fedoseeva A. I., Vvedensky A. V. Hydrogen permeability of Pd-Pb foils of various compositions. Condensed Matter and Interphases. 2023;24(1): 85–94. https://doi.org/10.17308/kcmf.2023.25/10977
Hu Z., Li H., Zhao W., Zhou W., Hu S. Microstructure determination of PdRu immiscible alloys based on electron-pair distribution function and local elemental segregation. Cell Reports PhysicalScience. 2023:4(12): 101713. https://doi.org/10.1016/j.xcrp.2023.101713
Ievlev V. M., Burkhanov G. S., Maksimenko A. A., ... Roshan N. R. Structure and properties of Pd-Ru membrane alloy foil produced in the process of magnetron sputtering. Inorganic Materials: Applied Research. 2014: 5(4): 303–306. https://doi.org/10.1134/S2075113314040248
Gabrielli C., Grand P. P., Lasia A., Perrot H. Investigation of hydrogen adsorption-absorbtion into thin palladium films. I. Theory. Journal of The Electrochemical Society. 2004:151(11): A1925–A1936. https://doi.org/10.1149/1.1797033
Gabrielli C., Grand P. P., Lasia A., Perrot H. Investigation of hydrogen adsorption-absorbtion into thin palladium films. II. Cyclic voltammetry. Journal of The Electrochemical Society. 2004:151(11): A1937–A1942. https://doi.org/10.1149/1.1797035
Fedoseeva A. I., Morozova N. B., Dontsov A. I., Kozaderov O. A., Vvedensky A. V. Cold-rolled binary palladium alloys with copper and ruthenium: injection and extraction of atomic hydrogen. Russian Journal of Electrochemistry. 2022:58(9). 812–822. https://doi.org/10.1134/s1023193522090051
Morozova N. B., Vvedensky A. V., Beredina I. P. The phase-boundary exchange and the non-steadystate diffusion of atomic hydrogen in Cu-Pd and Ag-Pd alloys. Part I. Analysis of the model. Protection of Metals and Physical Chemistry of Surfaces. 2014:50(6): 699–704. https://doi.org/10.1134/S2070205114060136
Morozova N. B., Vvedensky A. V., Beredina I. P. Phase boundary exchange and nonstationary diffusion of atomic hydrogen in Cu-Pd and Ag-Pd alloys II experimental data. Protection of Metals and Physical Chemistry of Surfaces. 2015:51(1): 72–80. https://doi.org/10.1134/S2070205115010098
Kuznetsov V. V., Khaldeev G. V., Kichigin V. I. Hydrogenation of metals in electrolytes. Moscow: Mashinostroenie Publ.; 1993. 244 p. (In Russ.)
Didenko L. P., Sementsova L. A., Chizhov P. E., Babak V. N., Savchenko V. I. Separation performance of foils from Pd–In(6%)–Ru(0.5%), Pd–Ru(6%), and Pd—Ru(10%) alloys and influence of CO2, CH4, and water vapor on the H2 flow rate through the test membranes. Russian Chemical Bulletin. 2017:65(8): 1997–2003. https://doi.org/10.1007/s11172-016-1543‑4
Wang X., Feng X., Yang L., … Luo W. Highly efficient and direct recovery of low-pressure hydrogen isotopes from tritium extraction gas by PdY alloy membrane permeator. Fusion Engineering and Design. 2024:202: 114348. https://doi.org/10.1016/j.fusengdes.2024.114348
Ievlev V. M., Dontsov A. I., Novikov V. I., … Burkhanov G. S. Composite membranes based on Pd- Cu and Pd-Pb solid solutions. Metally. 2018:5: 70–74. Available at: https://w w w.elibrar y.ru/item.asp?id=36740359 (In Russ.)
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.