Особенности локальной активации алюминия в присутствии гидрокарбонат-ионов
Аннотация
Цель статьи – исследование влияния гидрокарбонат-ионов на локальную активацию алюминия при температуре 25 °С.
Методами вольтамперометрии, хроноамперометрии, оптической и сканирующей электронной микроскопии, рентгеноспектрального микроанализа изучены особенности локальной активации алюминия в присутствии гидрокарбонат-ионов (2·10–4–4·10–3 М).
Установлена область концентраций гидрокарбоната натрия, где алюминий подвергается локальной активации, получены экспериментальные данные о зависимости основных количественных характеристик данного процесса (потенциала питтингообразования, потенциала локальной активации и индукционного периода) от концентрации гидрокарбоната натрия. На основе формально-кинетического подхода предложен механизм локальной активации алюминия в гидрокарбонатных средах
Скачивания
Литература
Balaban-Irmenin Yu. V., Fokina N. G., Petrova S. Yu. Protection against internal corrosion of water heating network pipelines*. Energy saving and water treatment. 2009;62(6): 1–4. (In Russ.). Available at: https://elibrary.ru/item.asp?edn=kzdbnh
Mass concentration of hydrocarbonates and alkalinity of natural waters*. Guidance document RD 52.24.493-2020. Ministry of Natural Resources and Environment of the Russian Federation. Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet) Rostov-on-Don. 2020. (In Russ.)
Akolzin P. A. Local corrosion of metal in heat power equipment. Moscow: Energoatomizdat Publ.; 1992. 272 p. (In Russ.)
Tödt F., Althof F. C. Korrosion und Korrosionsschutz. Berlin, Boston: De Gruyter; 1961. https://doi.org/10.1515/9783111508436
Balaban-Irmenin Yu. V. Protection against internal corrosion of water heating network pipelines. Moscow: Heat Supply News Publ.; 2013. 288 p. (In Russ.)
Kaluzhina S. A., Sieber I. V. Copper passivity and its breakdown in sodium bicarbonate solutions: A scanning electron microscopy and x-ray photoelectron and auger spectroscopy study. Russian Journal of Electrochemistry. 2006;42(12): 1352–1357. https://doi.org/10.1134/S1023193506120135
Nafikova N. G., Kaluzhina S. А., Sanina M. Y. Specificity of the passive state of iron in slightly alkaline aqueous media with different anionic composition. Condensed Matter and Interphases. 2017;19(3): 376–383. https://doi.org/10.17308/kcmf.2017.19/214
Skrypnikova E. A., Kaluzhina S. A. Effect of hydrodynamic conditions on copper pitting corrosion inhibition in ydrocarbonate-chloride solutions by benzotriazole. International Journal of Corrosion and Scale Inhibition. 2015;4(2): 139–145. https://doi.org/10.17675/2305-6894-2015-4-1-139-145
Thomas J. G. N., Tiller A. K. Formation and breakdown of surface films on copper in sodium hydrogen carbonate and sodium chloride solutions. I. Effect of anion concentrations. British Corrosion Journal. 1972;11(7): 256–262.
Skrypnikova E. A., Kaluzhina S. A. Inhibition of copper local depassivation in alkaline media with oxygen-containing anions. International Journal of Corrosion and Scale Inhibition. 2017;2(6): 142–150. https://doi.org/10.17675/2305-6894-2017-6-2-4
Ushakova E. Yu., Tutukina N. M., Marshakov I. K. The copper pitting corrosion and a mechanism of its initiation in carbonate-bicarbonate solutions. Protection of Metals. 1991; 27(6): 934–939. Available at: https://elibrary.ru/item.asp?id=12713135
Ushakova E. Yu., Tutukina N. M., Marshakov I. K. A mechanism of pitting development on copper in carbonate-bicarbonate solutions. 1991; 27(6): 940–944. Available at: https://elibrar y.ru/item.asp?id=12712488
Corrosion resistance of chemical production equipment. Corrosion under the action of heat carriers, coolants and other working bodies* / A. M. Sukhotin, V. M. Berenblit (eds.). Leningrad: Khimiya Publ.; 1988. 360 p. (In Russ.)
Minakova T. A., Kaluzhina S. A. Peculiarities of the anodic behavior of aluminum in environments with different pH in the presence of sodium chloride and glycine*. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2012;12(2): 49–54. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=18358962
Borisenkova T. A., Kaluzhina S. A. The nature of aluminum distraction at neutral mediums with different anion composition. Condensed Matter and Interphase. 2009;11(2): 106–110. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?edn=kxfppl
Borisenkova T. A., Kaluzhina S. A. The passivation and local activation of aluminum at water solutions under action of inorganic and organic additives. Condensed Matter and Interphase. 2011;13(2): 132–136. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=16445515
Minakova T. A. Passivation and local anodic activation of aluminum in environments of different composition at elevated temperatures*. Cand. chem. sci. diss. Abstr. Voronezh: 2013. 18 p. Available at: https://viewer.rsl.ru/ru/rsl01005535132?page=1&rotate=0&theme=white
Kaluzhina S. A., Minakova T. A. Passivation and local activation of aluminum*. Saarbrücken: Lambert Academic Publ.; 2015. 141 p. (In Russ.). Available at: https://www.elibrary.ru/item.asp?edn=wecplf
Sataraev D. A., Akhmetova A. N., Dresvyannikov A. F., Petrova E. V. Electrochemical behavior of aluminum in sodium chloride solutions in the presence of zirconium (IV), magnesium (II) and lanthanum (III) ions. (In Russ., abstract in Eng.). Bulletin of the Technological University. 2023;26(10): 96–100. https://doi.org/10.55421/1998-7072_2023_26_10_96
Dresvyannikov A. F., Ivshin Y. V., Chong P. T., Khairullina A. I. Features of the anodic behavior of a combined titanium-aluminum electrode and the physicochemical properties of the products of its dissolution. Protection of Metals and Physical Chemistry of Surfaces. 2022;58(1): 90–98. https://doi.org/10.1134/S2070205122010075
Kaesche H. Die Korrosion der Metalle. Berlin: Springer-Verlag: 1979. 388 p.
Sinyavskiy V. S. Development of concepts of pitting corrosion and stress corrosion of aluminum alloys*. In: Physical Chemistry: Collection of reports of the Karpov Scientific Research Institute, June 5-9, 2000, Moscow. Moscow: NIITEKhIM Publ.; 2000. pp. 86–98. (In Russ.)
Kaluzhina S. A., Aksenova E. N., Minakov T. A. Effect of hydrocarbonate ions on the anodic behavior of aluminum at different temperatures*. Protection of Metals and Physical Chemistry of Surfaces. 2016;5(1): 1–6. (In Russ.). Available at: https://www.elibrary.ru/item.asp?edn=vxcilj
Minakova T. A., Kaluzhina S. A., Aksenova E. N. Features of local activation of aluminum in the presence of hydrocarbonate ions*. In: Electrochemistry and corrosion of metals and alloys: Collection of materials of the All-Russian conference with international participation; Dedicated to the 110th anniversary of the birth of A. Ya. Shatalov, the 95th anniversary of the birth of I. K. Marshakov, October 4–5, 2023, Voronezh. Voronezh: Publishing
House of Voronezh State University; 2023. pp. 101–103. (In Russ.). Available at: https://www.elibrary.ru/item.asp?edn=rswppw
Shatalov A. Ya. Practical training in physical chemistry*. Moscow: Vysshaya Shkola Publ.; 1975. 284 p. (In Russ,)
Skripnikova E. A. Inhibition of local activation of copper in alkaline media at elevated temperatures*. Cand. chem. sci. diss. Abstr. Tambov: 2009. 24 p. Available at: https://new-disser.ru/_avtoreferats/01004592734.pdf
Khomutov N. E. Electromotive forces, electrode potentials and chemical equilibria*. Moscow: Khimiya Publ; 1971. 116 p. (In Russ.)
Gorokhovskaya V. I. Practical training in electrochemical methods*. Moscow: Vysshaya Shkola Publ.; 1983. 191 p. (In Russ.) 29. Kozin L. F. Electrodeposition and dissolution of multivalent metals*. Kyiv: Naukova Dumka Publ.; 1989. 462 p. (In Russ.)
Rachev H. Handbook of corrosion*. Moscow: Mir Publ.; 1982. 517 p. (In Russ.)
Plambeck J. A. Electroanalytical chemistry: Basic principles and applications. N.Y.: John Wiley & Sons, Inc.; 1982. 426 p.
Revie R. W. Uhlig’s corrosion handbook. Hoboken: John Wiley & Sons Limited; 2011. 1285 p.
Freiman L. I. Stability and kinetics of pitting development*. In: Results of Science and Technology. Corrosion and Corrosion Protection. 1985;11(1): 3–71. (In Russ.)
Rosenfeld I. L. Corrosion and protection of metals. Moscow: Metallurgiya Publ.; 1969. 448 p. (In Russ.)
Kuznetsov Yu. I., Lukyanchikov O. A., Andreev N. N. On the role of the anion nature in the initial stages of metal depassivation in neutral aqueous media*. Russian Journal of Electrochemistry. 1985;21(12): 1690–1693. (In Russ.)
Kolotyrkin Ya. M., Alekseev Yu. V. On the mechanism of self-regulation of the process of dissolution (corrosion) of a passive metal in aqueous solutions*. Russian Journal of Electrochemistry. 1995;31(1): 5–10. (In Russ.)
Zhuk N. P. Course in the theory of corrosion and protection of metals*. Moscow: Metallurgiya Publ.; 1976. 472 p. (In Russ.)
Skorcheletti V. V. Theoretical electrochemistry*. Leningrad: Khimiya Publ.; 1963. 305 p. (In Russ.)
Kuznetsov Yu. I., Luk’yanchikov O. A. Initiation and inhibition of pitting on nickel in neutral solutions. Protection of Metals. 1988;24(2): 241–248. Available at: https://www.elibrary.ru/item.asp?id=30955179
Kuznetsov Yu. I., Valuev I. A. On the role of anions in the kinetics of pitting on iron in aqueous solutions. Russian Journal of Electrochemistry. 1984;20(3): 424–427. (In Russ.)
Kuznetsov Yu. I. Role of the complexation concept in the present views on the initiation and inhibition of metal pitting. Protection of Metals. 2001; 37(5): 434-439. https://doi.org/10.1023/A:1012362029520
Stepanov S. I., Аung M. M., Aung H. Ye., Boyarintsev А. V. Chemical aspects of scandium carbonate leaching from red muds. Proceedings of the Voronezh State University of Engineering Technologies. 2018;80(4): 349-355. (In Russ.). https://doi.org/10.20914/2310-1202-2018-4-349-355
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.