Advanced methods for preparing especially pure glasses based on germanium and gallium chalcogenides. Part 1. Synthesis via volatile and low-melting compounds. Review
Abstract
Glasses based on germanium and gallium chalcogenides are promising optical materials for the near and mid-infrared (IR) regions. They are used to develop fiber-optic sensors, sources of supercontinuum, luminescent and laser radiation, glassceramic materials with improved mechanical properties, memory cells, and other optical and optoelectronic devices. The most important characteristic of chalcogenide glasses is the content of limiting impurities that have the most negative effect on their optical properties. Conventional methods for producing these materials include melting simple substances with getters in evacuated silica-glass ampoules and then distilling the melt. These methods do not allow achieving extremely low concentrations of impurities that do not affect optical transparency of glasses. Therefore, new approaches need to be developed.
The purpose of the review is to systematize the scientific information related to the methods for preparing especially pure chalcogenide glasses which have been developed over the past 15 years at the Institute of Chemistry of High Purity Substances of the Russian Academy of Sciences. The methods discussed in the first part of the paper include: 1) synthesis of p-element chalcogenides via volatile iodides; 2) preparing a batch by thermal decomposition of germanium sulfide and selenide iodides; 3) synthesis and deep purification of germanium monochalcogenides. The developed methods made it possible to reduce the content of hydrogen, oxygen, and carbon impurities and heterogeneous inclusions in chalcogenide glasses by
1–2 orders of magnitude as compared to conventional methods. In conclusion, the article discusses the possibilities for further reduction of the content of impurities in glasses based on germanium and gallium chalcogenides to achieve extremely low optical losses
Downloads
References
Sanghera J. S. Optical properties of chalcogenide glasses and fibers. In: Chalcogenide glasses: preparation, properties and applications. J.-L. Adam, X. Zhang (eds.). Oxford Cambridge Philadelphia New Delhi: Woodhead Publishing Series in Electronic and Optical Materials; 2014; 44: 113–138. https://doi.org/10.1533/9780857093561.1.113
Zakery A., Elliott S. R. Optical properties and applications of chalcogenide glasses: a review. Journal of Non-Сrystalline Solids. 2003;330: 1–12. https://doi.org/10.1016/j.jnoncrysol.2003.08.064
Cao Z., Dai S., Liu Z., Liu C., Ding S., Lin C. Investigation of the acousto-optical properties of Ge–As–Te–(Se) chalcogenide glasses at 10.6 μm wavelength. Journal of American Ceramic Society. 2021;104: 3224–3234. https://doi.org/10.1111/jace.17767
Vinogradova G. Z. Glass formation and phase equilibria in chalcogenide systems: binary and ternary systems*. Moscow: Nauka Publ.; 1984. 174 p. (In Russ.)
Felts A. Amorphous and glassy inorganic solids*. Moscow: Mir Publ., 1986. 558 p. (In Russ.)
Yang A., Zhang M., Li L., … Tang D. Ga – Sb – S chalcogenide glasses for mid-infrared applications. Journal of the American Ceramic Society. 2015;99(1): 12–15. https://doi.org/10.1111/jace.14025
Lecomte A., Nazabal V., Le Coq D., Calvez L. Ge-free chalcogenide glasses based on Ga-Sb-Se and their stabilization by iodine incorporation. Journal of Non-Crystalline Solids. 2018;481: 543–547. https://doi.org/10.1016/j.jnoncrysol.2017.11.046
Zhou T., Zhu Z., Liu X., Liang Z., Wang X. A Review of the precision glass molding of chalcogenide glass (ChG) or
infrared optics. Micromachines. 2018;9: 337. https://doi.org/10.3390/mi9070337
Kumar M. B., Kumar P. R. A missile jamming design for aircraft defence using infrared automated counter measures. Journal of Scientific Research. 2022;66(02): 163–171. https://doi.org/10.37398/jsr.2022.660222
Boussard-Plédel C. Chalcogenide waveguides for infrared sensing. In.: Chalcogenide glasses: preparation, properties and applications. J.-L. Adam, X. Zhang (eds.). Oxford Cambridge Philadelphia New Delhi: Woodhead Publishing Series in Electronic and Optical Materials; 2014;44: 381–410. https://doi.org/10.1533/9780857093561.2.381
Hyot B. Chalcogenide for phase change optical and electrical memories. In.: Chalcogenide glasses: reparation, properties and applications. J.-L. Adam, X. Zhang (eds.). Oxford Cambridge Philadelphia New Delhi: Woodhead Publishing Series in Electronic and Optical Materials; 2014;44: 597–631. https://doi.org/10.1533/9780857093561.2.597
Saini T. S., Sinha R. K. Mid-infrared supercontinuum generation in soft-glass specialty optical fibers: a review. Progress in Quantum Electronics. 2021;78: 1000342. https://doi.org/10.1016/j.pquantelec.2021.100342
Lin C., Rüssel C., Dai S. Chalcogenide glass-ceramics: functional design and crystallization mechanism. rogress
in Materials Science. 2017;93: 1–44. https://doi.org/10.1016/j.pmatsci.2017.11.001
Heo J., Chung W. J. Rare-earth-doped chalcogenide glass for lasers and amplifiers. In: Chalcogenide glasses: preparation, properties and applications. J.-L. Adam, X. Zhang (eds.). Oxford Cambridge Philadelphia New Delhi: Woodhead Publishing Series in Electronic and Optical Materials; 2014; 44: 347–380. https://doi.org/10.1533/9780857093561.2.347
Jackson S. D., Jain R. K. Fiber-based sources of coherent MIR radiation: key advances and future prospects. Optics Express. 2020;28(21): 30964–31017. https://doi.org/10.1364/OE.400003
Snopatin G. E., Shiryaev V. S., Plotnichenko V. G., Dianov E. M., Churbanov M. F. High-purity chalcogenide glasses for fiber optics. Inorganic Materials. 2009;45(13): 1439–1460. https://doi.org/10.1134/S0020168509130019
Shiryaev V. S., Ketkova L. A., Churbanov M. F., ... Sibirkin A. A. Heterophase inclusions and dissolved impurities in Ge25Sb10S65 glass. Journal of Non-Crystalline Solids. 2009;355(52–54): 2640–2646. https://doi.org/10.1016/j.jnoncrysol.2009.08.022
Nishii J., Yamashita T., Yamagishi T. Oxide impurity absorptions in Ge – Se – Te glass fibres. Journal of aterials
Science. 1989;24: 4293–4297. https://doi.org/10.1007/BF00544501
He Y., Wang X., Nie Q., … Dai S. Optical properties of Ge–Te–Ga doping Al and AlCl3 far infrared transmitting chalcogenide glasses. Infrared Physics & Technology.2013;58: 1–4. https://doi.org/10.1016/j.infrared.2012.12.038
Ketkova L. A., Churbanov M. F. Heterophase inclusions as a source of non-selective optical losses in highpurity chalcogenide and tellurite glasses for fiber optics. Journal of Non-Crystalline Solids. 2017;480: 18–22. https://doi.org/10.1016/j.jnoncrysol.2017.09.018
Shiryaev V. S., Ketkova L. A., Churbanov M. F., ... Sibirkin A. A. Preparation of optical fibers based on Ge – Sb – S glass system. Optical Materials. 2009;32: 362–367. https://doi.org/10.1016/j.optmat.2009.09.003
Churbanov M. F., Skripachev I. V., Snopatin G. E., Ketkova L. A., Plotnichenko V. G. The problems of optical loss reduction in arsenic sulfide glass IR fibers. Optical Materials. 2020;122: 109812. https://doi.org/10.1016/j.optmat.2020.109812
Dianov E. M., Petrov M. Yu., Plotnichenko V. G., Sysoev V. K. Estimate of the minimum optical losses in chalcogenide glasses. Soviet Journal of Quantum Electronics.1982;12(4): 498–499. https://doi.org/10.1070/QE1982v012n04ABEH012237
Churbanov M. F., Snopatin G. E., Shiryaev V. S., Plotnichenko V. G., Dianov E. M. Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics. Journal of Non-Crystalline Solids. 2011;357: 2352–2357. https://doi.org/10.1016/j.jnoncrysol.2010.11.057
Shiryaev V. S., Smetanin S. V., Ovchinnikov D. K., Churbanov M. F., Kryukova E. B., Plotnichenko V. G. Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass. Inorganic Materials. 2025;41(3): 308–314. https://doi.org/10.1007/s10789-005-0129-6
Shibata S., Terunuma Y., Manabe T. Ge – P – S chalcogenide glass fibers. Japanese Journal of Applied Physics. 1980;19(10): 603–605. https://doi.org/10.1143/JJAP.19.L603
Churbanov M. F., Shiryaev V. S. Preparation of highpurity chalcogenide glasses. In: Chalcogenide glasses: preparation, properties and applications. J.-L. Adam, X. Zhang (eds.). Oxford Cambridge Philadelphia New Delhi: Woodhead Publishing Series in Electronic and Optical Materials; 2014;44: 3–35. https://doi.org/10.1533/9780857093561.1.3
Troles J., Shiryaev V., Churbanov M., … Adam J. L. GeSe4 glass fibres with low optical losses in the MID-IR. Optical Materials. 2009;32: 212–215. https://doi.org/10.1016/j.optmat.2009.07.024
Churbanov M. F., Velmuzhov A. P., Sukhanov M. V., Snopatin G. E., Scripachev I. V., Plotnichenko V. G.
rsenicsulfide glasses with low content of hydrogen impurity for fiber optics. Optical Materials. 2018;77: 87–92. https://doi.org/10.1016/j.optmat.2018.01.023
Novoselova A. V., Zlomanov V. P., Karbanov S. G., Matveyev O. V., Gas’kov A. M. Physico-chemical study of the germanium, tin, lead chalcogenides. Progress in Solid State Chemistry. 1972;7: 85–115. https://doi.org/10.1016/0079-6786(72)90005-2
Speiser R., Johnston H. L. Vapor pressures of inorganic substances. IX. Gallium. Journal of the American Chemical Society. 1953;75(6): 1469–1470. https://doi.org/10.1021/ja01102a057
Greenberg H. Thermodynamic basis of crystal growth. Phase P-T-X equilibrium and non-stoichiometry. Springer Berlin Heidelberg: Springer series in materials science; 2002. 250 p. https://doi.org/10.1007/978-3-662-04876-4
Velmuzhov A. P., Sibirkin A. A., Shiryaev V. S., … Koltashev V. V. Preparation of Ge – Sb – S – I glass system via volatile iodides. Journal of Optoelectronics & Advanced. Materials. 2011;13(8): 936–939.
Velmuzhov A. P., Sibirkin A. A., Shiryaev V. S., … Plekhovich A. D. Preparation of Ge – Sb – Se – I glass system via polatile iodides. Journal of Non-Crystalline Solids. 2014; 405: 100–103. https://doi.org/10.1016/j.jnoncrysol.2014.09.015
Churbanov M. F., Sibirkin A. A., Vel’muzhov A. P., Shirjaev V. S., Dianov E. M., Plotnichenko V. G. Method of producing especially pure heat-resistant chalco-idide glass. Patent RF: No. 2467962. Publ. 27.11.2012, bull. No. 33. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=37502753
Velmuzhov A. P., Sibirkin A. A., Shiryaev V. S., Churbanov M. F. Equilibrium in GeI4 – S(Se) systems. Journal of Optoelectronics & Advanced. Materials. 2011;13(11–12): 1437–1441.
Velmuzhov A. P., Sukhanov M. V., Potapov A. M., Suchkov A. I., Churbanov M. F. Preparation of extrapure a2S3 by reacting GaI3 with sulfur. Inorganic Materials. 2014;50(7): 656–660. https://doi.org/10.1134/S0020168514070152
Velmuzhov A. P., Sukhanov M. V., Suchkov A. I., Churbanov M. F., Turina E. A. Preparation of ZnGa2S4 by reacting GaI3 and ZnI2 with sulfur. Inorganic Materials. 2016; 52(7): 650–654. https://doi.org/10.1134/S0020168516070141
Velmuzhov A. P., Tyurina E. A., Sukhanov M. V., Suchkov A. I. Preparation of ZnGa2Se4 by reacting GaI3 and ZnI2 with selenium. Inorganic Materials. 2024. (in press).
Churbanov M. F., Velmuzhov A. P., Sukhanov M. V. Method of producing especially pure sulfides of p-elements of group III of the Periodic table. Patent RF: No. 2513930. Publ. 20.04.2014, bull. No. 11. (In Russ.). Available at: https://patents.s3.yandex.net/RU2513930C1_20140420.pdf
PCPDFWIN – a Windows retrieval/display program for accessing the ICDD PDF-2 database, JSPDS – international Center for Diffraction Data, 1998.
Binnewies M., Glaum R., Schmidt M., Schmidt P. Chemical vapor transport reactions. Berlin/Boston: Walter de Gruyter GmbH & Co. KG; 2012. 628 p. https://doi.org/10.1515/9783110254655
Schlieper A., Feutelais Y., Fries S. G., Legendre B., Blachnik R. Thermodynamic evaluation of the Germanium – Tellurium system. Calphad. 1999;23(1): 1–18. https://doi.org/10.1016/S0364-5916(99)00012-7
Dembovsky S. A., Kirilenko V. V. Glass formation and chemical compounds in the systems AIV – BVI – CVII (AIV Si, Ge; BVI = S, Se; CVII = Br, I)*. Glass Physics and Chemistry. 1975;3: 225–230. (In Russ.)
Pohl S., Seyer U., Krebs B. Sulfidhalogenide des Germaniums: Darstellung and Struktyruren von Ge4S6Br4 and Ge4S6I4. Zeitschrift für Naturforschung B. 1981;36(11): 1432–1436. https://doi.org/10.1515/znb-1981-1116
Velmuzhov A. P., Sukhanov M. V., Shiryaev V. S., Suchkov A. I., Plekhovich A. D. Thermal decomposition study of GeSI2 and Ge2S3I2 glassy alloys. Journal of Non-CrystallineSolids. 2015;411: 40–44. https://doi.org/10.1016/j.jnoncrysol.2014.09.018
Velmuzhov A. P., Sukhanov M. V., Plekhovich A. D., … Churbanov M. F. New method for preparation of specially pure glasses in the Ge – S – I system by melting the products of thermal decomposition of Ge2S3I2. Journal of Non-Crystalline Solids. 2015;429: 178–182. https://doi.org/10.1016/j.jnoncrysol.2015.09.006
Velmuzhov A. P., Sukhanov M. V., Churbanov M. F. Method of obtaining portionally clear glasses of the system of germanium-sulfur-iodine. Patent RF: No. 2618257. Publ. 03.05.2017, bull. No. 13. (In Russ.). Available at: https://patenton.ru/patent/RU2618257C1.pdf
Velmuzhov A. P., Sukhanov M. V., Shiryaev V. S., Kotereva T. V., Snopatin G. E., Churbanov M. F. Preparation of special purity Ge-S-I and Ge-Se-I glasses. Optical Materials. 2017;67: 59–63. https://doi.org/10.1016/j.optmat.2017.03.041
Blinov L. N. Modelling, synthesis, and study of new glassy chalcogenide materials. Glass Physics and Chemistry. 2015: 41(1), 26–30. https://doi.org/10.1134/s108765961501006x
Velmuzhov A. P., Sukhanov M. V., Shiryaev V. S., … Fadeeva D. A. Preparation of especially pure Ge-Se glasses via germanium monoselenide for Mid-IR fiber optics. Optical Materials. 2018;84: 888–892. https://doi.org/10.1016/j.optmat.2018.08.029
Velmuzhov A. P., Sukhanov M. V., Churbanov M. F. Method for producing ultra-pure chalcogenide glasses in the germanium-selenium system. Patent RF: No. 2648389. Publ. 26.03.2018, bull. No. 9. (In Russ.). Available at: https://patents.s3.yandex.net/RU2648389C1_20180326.pdf
Velmuzhov A. P., Tyurina E. A., Sukhanov M. V., … Shiryaev V. S. Preparation of high-purity chalcogenide glasses containing gallium(III) sulfide. Journal of Non-Crystalline Solids. 2022;593: 121786. https://doi.org/10.1016/j.jnoncrysol.2022.121786
Velmuzhov A. P., Sukhanov M. V., Zernova N. S., … Kurganova A. E. Preparation of Ge20Se80 glasses with low hydrogen and oxygen impurities content for middle IR fiber optics. Journal of Non-Crystalline Solids. 2019;521: 119505. https://doi.org/10.1016/j.jnoncrysol.2019.119505
Velmuzhov A. P., Tyurina E. A., Sukhanov M. V., … Shiryaev V. S. Distillation with separate condensation of components as a new way to prepare especially pure GexTe100−x glasses with precisely desired composition. Separation and Purification Technology. 2023;324: 124532. https://doi.org/10.1016/j.seppur.2023.124532
Devyatykh G. G., Elliev Yu. E. Introduction to the theory of deep purification of substances*. Moscow: Nauka Publ., 1981, 320 p. (In Russ.)]
Velmuzhov A. P., Sukhanov M. V., Plekhovich A. D., … Shiryaev V. S. Preparation and investigation of Ge–S–I glasses for infrared fiber optics. Optical Materials. 2016;52: 87–91. https://doi.org/10.1016/j.optmat.2015.12.019
Velmuzhov A. P., Tyurina E. A., Sukhanov M. V., Plekhovich A. D., Shiryaev V. S. Effect of iodine on physicochemical and optical properties of Ge20Te77-xSe3Ix (x =0–10) glasses. Journal of Non-Crystalline Solids. 2023;622: 122676. https://doi.org/10.1016/j.jnoncrysol.2023.122676
Wilhelm A. A., Boussard-Pledel C., Coulombier Q., Lucas J., Bureau B., Lucas P. Development of far-infraredtransmitting Te based glasses suitable for carbon dioxide detection and space optics. Advanced Materials. 2007;19: 3796–3800. https://doi.org/10.1002/adma.200700823
Galstyan A., Messaddeq S. H., Skripachev I., Galstian T., Messaddeq Y. Role of iodine in the solubility of Tm3+ons in As2S3 glasses. Optical Materials Express. 2016;6(1): 230–243. https://doi.org/10.1364/OME.6.000230
Velmuzhov A. P., Sukhanov M. V., Churbanov M. F., Kotereva T. V., Shabarova L. V., Kirillov Yu. P. Behavior of hydroxyl groups in quartz glass during heat treatment in the range 750–950 °C. Inorganic Materials. 2018;54(9): 925–930. https://doi.org/10.1134/S0020168518090169
Lallement L., Gosse C., Cardinaud C., Peignon-Fernandez M.-C., Rhallabi A. Etching studies of silica glasses in inductively coupled plasmas: Implications for microfluidic devices fabrication. Journal of Vacuum. Science &technology A. 2010;28: 277–286. https://doi.org/10.1116/1.3298875
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.