Химическое газофазное осаждение эпитаксиальных пленок Tm3Fe5O12, исследование их структуры и свойств в терагерцовом диапазоне
Аннотация
В настоящей работе в целях поиска и разработки новых материалов спинтроники методом химического осаждения из паров металлорганических прекурсоров (MOCVD) получены тонкие пленки феррограната Tm3Fe5O12 на монокристаллических подложках Gd3Ga5O12(111) – GGG и Y3Al5O12(111) - YAG. Пленки Tm3Fe5O12 были исследованы методами рентгеновской дифракции, рентгеноспектрального микроанализа, спектроскопии комбинационного рассеяния (КР) и терагерцовой (ТГц) импульсной спектроскопии.
Показан эпитаксиальный характер пленок, осажденных на подложки обоих типов. Обнаружено, что рост гранатной пленки в высокотемпературных вакуумных условиях MOCVD на подложке GGG осложнен испарением оксида галлия, что становится причиной внедрения оксида железа в приповерхностный слой подложки, обогащения примыкающего слоя пленки оксидом тулия и образования нестехиометрического граната с антиструктурными дефектами.
Сделан вывод о большей перспективности подложек YAG, поскольку гетероэпитаксия феррогранатов на них не имеет подобных осложнений
Скачивания
Литература
Nikitov S. A., Kalyabin D. V., Lisenkov I. V. … Pavlov E. S. Magnonics: a new research area in spintronics and spin wave electronics. Physics-Uspekhi. 2015;58: 1002–1028. https://doi.org/10.3367/UFNr.0185.201510m.1099
Robertson J. M. Liquid phase epitaxy of garnets. Journal of Crystal Growth. 1978;45: 233–242. https://doi.org/10.1016/0022-0248(78)90441-4
Hibiya, T., Görnert, P. Liquid phase epitaxy of garnets. Liquid phase epitaxy of electronic, optical and optoelectronic materials. P. Capper and M. Mauk (eds.). John Wiley & Sons Limited, US; 2007. p. 305–339. https://doi.org/10.1002/9780470319505.ch11
Akchurin R. H., Marmalyuk А. А. МОС-hydrid epitaxy in the technology of materials for photonics and electronics*. Technosphera Publ.; 2018. 488 p. (In Russ.)
Kaul A. R., Gorbenko O. Yu., Kamenev A. A. The role of heteroepitaxy in the development of new thin-film oxidebased functional materials. Russian Chemical Reviews. 2004; 73(9): 861–880. https://doi.org/10.1070/rc2004v073n09abeh000919
Geller S. Crystal chemistry of the garnets. Zeitschrift für Kristallographie; 1967;125: 1–47. https://doi.org/10.1524/zkri.1967.125.16.1
Blank T. G. H., Mashkovich E. A., Grishunin K. A., … Kimel A. V. Effective rectification of terahertz electromagnetic fields in a ferrimagnetic iron garnet. Physical Review B. 2023; 108: 094439. https://doi.org/10.1103/PhysRevB.108.094439
Volkov D. A., Gabrielyan D. A., Matveev A. A., … Nikitov S. A. Spin pumping from Lu3Fe5O12. JETP Letters. 2024; 119(5): 357-362. https://doi.org/10.1134/S0021364024600150
Kudasov Yu. B., Logunov M. V., Kozabaranov R. V., … Svetlov A. S. Magnetooptic properties of bismuth-substituted ferrite–garnet films in strong pulsed magnetic fields. Physics of the Solid State; 2018;60(11): 2207–2210. https://doi.org/10.1134/S106378341811015X
Kirilyuk A., Kimel A. V., Rasing T. Ultrafast optical manipulation of magnetic order. Reviews of Modern Physics. 2016; 88: 039904. https://doi.org/10.1103/RevModPhys.82.2731
Kaul A. R., Nygaard R. R., Ratovskiy V. Yu., Vasiliev A. L. TSF-MOCVD – a novel technique for chemical vapour deposition on oxide thin films and layered heterostructures. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2021;23(3): 396–405. https://doi.org/10.17308/kcmf.2021.23/3531
Nazarov M. M., Makarova S. A., Shkurinov A. P., Okhotnikov O. G. The use of combination of nonlinear optical materials to control terahertz pulse generation and detection. Applied Physics Letters. 2008;92: 021114. https://doi.org/10.1063/1.2831658
Coutaz J.-L., Garet F., Wallace V. Principles of terahertz time-domain spectroscopy. (1st ed.). New York: Jenny Stanford Publishing; 2018. 640 p. https://doi.org/10.1201/b22478
Hafizov A. A., Markelova M. N., Gu R., … Kaul A. R. Gas-phase deposition, structure and ferrimagnetic esonance of epitaxial garnet films of Lu3Fe5O12*. Solid state chemistry and functional materials – 2024: Proc. XIII All-Russ. Conf., 16–20 September 2024. St. Petersburg: Novbytkhim Publ.; 2024. p. 405. (In Russ.)
Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 1976;A32: 751–767. https://doi.org/10.1107/S0567739476001551
Karban’ O. V. Defects, crystal ordering, properties of oxides with garnet structure*. Cand. Phys. and Math. diss. Abstr. Izhevsk: 1999. 169 p. (In Russ.). Available at: https://www.dissercat.com/content/defekty-kristallograficheskoeuporyadochenie-svoistva-oksidov-so-strukturoi-granata
Dong J., Lu K. Non-cubic symmetry in garnet structures studied using extended x-ray absorption finestructure spectra. Physical Review B. 1999;43(11): 8808–8821. https://doi.org/10.1103/PhysRevB.43.8808
Efimov A. N., Lebedev A. O. Geometric aspects of heteroepitaxy*. St. Petersburg: SPbGETU «LETI» Publ.; 2012. 110 p. (In Russ.)
Rabkin L. I., Soskin S. A., Epshtein B. Sh. Ferrites. Structure, properties, production technology*. Leningrad: Energy Publ.; 1968. 384 p. (In Russ.)
Bilbao Crystallographic Server. Available at: https://www.cryst.ehu.es/
McDevitt N. T. Infrared lattice spectra of rare-earth aluminum, gallium, and iron garnets. Journal of the optical Society of America. 1969;59(9): 1240–1244. https://doi.org/10.1364/josa.59.001240
Gaume R., Steere D., Sundaram S. K. Effect of nonstoichiometry on the terahertz absorption of Y3Al5O12 optical ceramics. Journal of Materials Research. 2014;29(19): 2338–2343. https://doi.org/10.1557/jmr.2014.236
Pavlov V. V., Pisarev R. V., Fiebig M., Fröhlich D. Optical harmonic generation in magnetic garnet epitaxial films near the fundamental absorption edge. Physics of the Solid State; 2003: 45(4): 662–669. https://doi.org/10.1134/1.1569002
Sharma A., Ciubotariu O. T., Matthes P., … Salvan G. Optical and magneto-optical properties of pulsed laser-deposited thulium iron garnet thin films. Applied Research. 2024;3: e202200064. https://doi.org/10.1002/appl.202200064
Konnikova M. R., Tretyakov A. K., Shevchenko A. R., … Shkurinov A. P. PCM for driving active THz modulators: frequency and polarization sensitivity. 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024: c. 326–326. https://doi.org/10.1109/ICLO59702.2024.10624176
Konnikova M., Tretyakov A., Kistenev Y., Ozheredov I., Coutaz J.-L., Shkurinov A. Novel method for extracting electromagnetic parameters of thin films based on dualmode terahertz time-domain spectroscopy easurements. Journal of Infrared, Millimeter, and Terahertz Waves; 2024. (in press)
Copyright (c) 2024 Конденсированные среды и межфазные границы

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.





