Chemical vapor deposition of Tm3Fe5O12 epitaxial films, investigation of their structure and properties in the terahertz range

Keywords: Thin films, Iron garnets, MOCVD, Structure, Antisite defects, Raman spectroscopy, Terahertz spectroscopy

Abstract

In this study, for the search and development of new spintronic materials, thin films of Tm3Fe5O12 iron garnet were obtained by the metalorganic chemical vapor deposition (MOCVD) on single-crystal  Gd3Ga5O12(111) – GGG and Y3Al5O12(111) – YAG substrates. The Tm3Fe5O12 films were investigated using X-ray diffraction, Energy dispersive X-Ray microanalysis, Raman spectroscopy and terahertz (THz) pulsed spectroscopy.

The epitaxial nature of films deposited on substrates of both types demonstrated. It was found that the growth of garnet film under the high-temperature vacuum conditions of MOCVD on a GGG substrate is complicated by the evaporation of gallium oxide, which causes the introduction of iron oxide into the surface layer of the substrate, enrichment of the adjacent layer of the film with thulium oxide and the formation of non-stoichiometric garnet with antisite defects.

It was concluded that YAG substrates are more promising, since the heteroepitaxy of iron garnets on them does not have such complications

Downloads

Author Biographies

Maria N. Markelova, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation

Cand. Sci. (Chem.), Research Fellow at the Department of Chemistry, Lomonosov Moscow State University (Moscow, Russian Federation)

Abduvosit A. Hafizov, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation

graduate student at the Higher School of Material Science, Lomonosov Moscow State University (Moscow, Russian Federation)

Xiaoyu Shi, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation

master degree student at the Higher School of Material Science, Lomonosov Moscow State University
(Moscow, Russian Federation)

Igor E. Graboy, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation

Cand. Sci. (Chem.), Senior Research Fellow at the Department of Chemistry, Lomonosov Moscow
State University (Moscow, Russian Federation)

Maxim S. Shanin, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation

graduate student, Junior Research Fellow at the Department of Physics, Lomonosov Moscow State University (Moscow, Russian Federation); Research Fellow at National Research Centre “Kurchatov Institute” (Moscow, Russian Federation)

Maria R. Konnikova, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation

Junior Research Fellow at the Department of Physics, Lomonosov Moscow State University (Moscow, Russian Federation); Junior Research Fellow at National Research Centre “Kurchatov Institute” (Moscow, Russian Federation)

Alexander P. Shkurinov, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation

Dr. Sci. (Phys.–Math.), Сorresponding member of the Russian Academy of Sciences, Full Professor at the Chair of General Physics and Wave Processes, Lomonosov Moscow State University (Moscow, Russian Federation)

Andrey R. Kaul, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation

Dr. Sci. (Chem.), Full Professor at the Chair of Inorganic Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation

References

Nikitov S. A., Kalyabin D. V., Lisenkov I. V. … Pavlov E. S. Magnonics: a new research area in spintronics and spin wave electronics. Physics-Uspekhi. 2015;58: 1002–1028. https://doi.org/10.3367/UFNr.0185.201510m.1099

Robertson J. M. Liquid phase epitaxy of garnets. Journal of Crystal Growth. 1978;45: 233–242. https://doi.org/10.1016/0022-0248(78)90441-4

Hibiya, T., Görnert, P. Liquid phase epitaxy of garnets. Liquid phase epitaxy of electronic, optical and optoelectronic materials. P. Capper and M. Mauk (eds.). John Wiley & Sons Limited, US; 2007. p. 305–339. https://doi.org/10.1002/9780470319505.ch11

Akchurin R. H., Marmalyuk А. А. МОС-hydrid epitaxy in the technology of materials for photonics and electronics*. Technosphera Publ.; 2018. 488 p. (In Russ.)

Kaul A. R., Gorbenko O. Yu., Kamenev A. A. The role of heteroepitaxy in the development of new thin-film oxidebased functional materials. Russian Chemical Reviews. 2004; 73(9): 861–880. https://doi.org/10.1070/rc2004v073n09abeh000919

Geller S. Crystal chemistry of the garnets. Zeitschrift für Kristallographie; 1967;125: 1–47. https://doi.org/10.1524/zkri.1967.125.16.1

Blank T. G. H., Mashkovich E. A., Grishunin K. A., … Kimel A. V. Effective rectification of terahertz electromagnetic fields in a ferrimagnetic iron garnet. Physical Review B. 2023; 108: 094439. https://doi.org/10.1103/PhysRevB.108.094439

Volkov D. A., Gabrielyan D. A., Matveev A. A., … Nikitov S. A. Spin pumping from Lu3Fe5O12. JETP Letters. 2024; 119(5): 357-362. https://doi.org/10.1134/S0021364024600150

Kudasov Yu. B., Logunov M. V., Kozabaranov R. V., … Svetlov A. S. Magnetooptic properties of bismuth-substituted ferrite–garnet films in strong pulsed magnetic fields. Physics of the Solid State; 2018;60(11): 2207–2210. https://doi.org/10.1134/S106378341811015X

Kirilyuk A., Kimel A. V., Rasing T. Ultrafast optical manipulation of magnetic order. Reviews of Modern Physics. 2016; 88: 039904. https://doi.org/10.1103/RevModPhys.82.2731

Kaul A. R., Nygaard R. R., Ratovskiy V. Yu., Vasiliev A. L. TSF-MOCVD – a novel technique for chemical vapour deposition on oxide thin films and layered heterostructures. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2021;23(3): 396–405. https://doi.org/10.17308/kcmf.2021.23/3531

Nazarov M. M., Makarova S. A., Shkurinov A. P., Okhotnikov O. G. The use of combination of nonlinear optical materials to control terahertz pulse generation and detection. Applied Physics Letters. 2008;92: 021114. https://doi.org/10.1063/1.2831658

Coutaz J.-L., Garet F., Wallace V. Principles of terahertz time-domain spectroscopy. (1st ed.). New York: Jenny Stanford Publishing; 2018. 640 p. https://doi.org/10.1201/b22478

Hafizov A. A., Markelova M. N., Gu R., … Kaul A. R. Gas-phase deposition, structure and ferrimagnetic esonance of epitaxial garnet films of Lu3Fe5O12*. Solid state chemistry and functional materials – 2024: Proc. XIII All-Russ. Conf., 16–20 September 2024. St. Petersburg: Novbytkhim Publ.; 2024. p. 405. (In Russ.)

Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A. 1976;A32: 751–767. https://doi.org/10.1107/S0567739476001551

Karban’ O. V. Defects, crystal ordering, properties of oxides with garnet structure*. Cand. Phys. and Math. diss. Abstr. Izhevsk: 1999. 169 p. (In Russ.). Available at: https://www.dissercat.com/content/defekty-kristallograficheskoeuporyadochenie-svoistva-oksidov-so-strukturoi-granata

Dong J., Lu K. Non-cubic symmetry in garnet structures studied using extended x-ray absorption finestructure spectra. Physical Review B. 1999;43(11): 8808–8821. https://doi.org/10.1103/PhysRevB.43.8808

Efimov A. N., Lebedev A. O. Geometric aspects of heteroepitaxy*. St. Petersburg: SPbGETU «LETI» Publ.; 2012. 110 p. (In Russ.)

Rabkin L. I., Soskin S. A., Epshtein B. Sh. Ferrites. Structure, properties, production technology*. Leningrad: Energy Publ.; 1968. 384 p. (In Russ.)

Bilbao Crystallographic Server. Available at: https://www.cryst.ehu.es/

McDevitt N. T. Infrared lattice spectra of rare-earth aluminum, gallium, and iron garnets. Journal of the optical Society of America. 1969;59(9): 1240–1244. https://doi.org/10.1364/josa.59.001240

Gaume R., Steere D., Sundaram S. K. Effect of nonstoichiometry on the terahertz absorption of Y3Al5O12 optical ceramics. Journal of Materials Research. 2014;29(19): 2338–2343. https://doi.org/10.1557/jmr.2014.236

Pavlov V. V., Pisarev R. V., Fiebig M., Fröhlich D. Optical harmonic generation in magnetic garnet epitaxial films near the fundamental absorption edge. Physics of the Solid State; 2003: 45(4): 662–669. https://doi.org/10.1134/1.1569002

Sharma A., Ciubotariu O. T., Matthes P., … Salvan G. Optical and magneto-optical properties of pulsed laser-deposited thulium iron garnet thin films. Applied Research. 2024;3: e202200064. https://doi.org/10.1002/appl.202200064

Konnikova M. R., Tretyakov A. K., Shevchenko A. R., … Shkurinov A. P. PCM for driving active THz modulators: frequency and polarization sensitivity. 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024: c. 326–326. https://doi.org/10.1109/ICLO59702.2024.10624176

Konnikova M., Tretyakov A., Kistenev Y., Ozheredov I., Coutaz J.-L., Shkurinov A. Novel method for extracting electromagnetic parameters of thin films based on dualmode terahertz time-domain spectroscopy easurements. Journal of Infrared, Millimeter, and Terahertz Waves; 2024. (in press)

Published
2024-12-04
How to Cite
Markelova, M. N., Hafizov, A. A., Shi, X., Graboy, I. E., Shanin, M. S., Konnikova, M. R., Shkurinov, A. P., & Kaul, A. R. (2024). Chemical vapor deposition of Tm3Fe5O12 epitaxial films, investigation of their structure and properties in the terahertz range. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(1), 104-114. https://doi.org/10.17308/kcmf.2025.27/12488
Section
Original articles