A universal algorithm for the calculation of vapor-liquid equilibrium diagrams in quasi-simple multicomponent systems

  • Nikolay A. Charykov St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation; D. Serikbayev East Kazakhstan Technical University, Center of Excellence “VERITAS”, 69. A. K. Protosanova ul., Ust-Kamenogorsk 070004, Republic of Kazakhstan; St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova ul., Saint Petersburg 197022, Russian Federation https://orcid.org/0000-0002-4744-7083
  • Alexey V. Rumyantsev St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation https://orcid.org/0000-0003-3985-2086
  • Viktor A. Keskinov D. Serikbayev East Kazakhstan Technical University, Center of Excellence “VERITAS”, 69. A. K. Protosanova ul., Ust-Kamenogorsk 070004, Republic of Kazakhstan https://orcid.org/0000-0003-3227-122X
  • Konstantin N. Semenov St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation; St. Petersburg State University, 7/9 Universitetskaya Embankment, Saint Petersburg 199034, Russian Federation; Pavlov First Saint Petersburg State Medical University, 6 - 8 L’va Tolstogo st., Saint Petersburg 197022, Russian Federation https://orcid.org/0000-0003-2239-2044
  • Valerya A. German St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation
  • Natalya A. Kulenova D. Serikbayev East Kazakhstan Technical University, Center of Excellence “VERITAS”, 69. A. K. Protosanova ul., Ust-Kamenogorsk 070004, Republic of Kazakhstan https://orcid.org/0000-0002-7063-4899
  • Marina V. Charykova St. Petersburg State University, 7/9 Universitetskaya Embankment, Saint Petersburg 199034, Russian Federation https://orcid.org/0000-0001-8311-0325
  • Mariia V. Keskinova St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation https://orcid.org/0000-0002-8359-9594
  • Mikhail Yu. Arshinov St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation
Keywords: Zdanovskii’s rule, Quasi-simple systems, Vapor-liquid equilibrium diagrams, Partial molar Gibbs energy, Analogues, Gibbs–Konovalov’s laws, Gibbs–Roozeboom rules

Abstract

The purpose of the study was to consider isothermal vapor-liquid diagrams of quasi-simple systems and to develop a universal algorithm for the calculation of isothermal vapor-liquid diagrams of these systems independent of the type of valence of the electrolyte, the number of components in the system, and the types of solid solutions. The suggested analogues of the three Gibbs–Konovalov and Gibbs–Roozeboom laws are true when moving along the univariant equilibrium lines on the solubility diagrams of systems with a random number of components.

The study did not involve any experiments. The suggested algorithm was applied for the description of solubility (solidliquid) diagrams and vapor-liquid equilibrium diagrams of three- and four-component systems with one, two, or three volatile components. In all the cases, the results of thermodynamic first-principles calculations agreed well with the experimental data presented in the literature.

Both the experimental data presented in the literature and the results of the thermodynamic first-principles calculation performed by the authors are also in good agreement with the suggested analogues of the Gibbs–Konovalov and Gibbs–Roozeboom laws

Downloads

Author Biographies

Nikolay A. Charykov, St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation; D. Serikbayev East Kazakhstan Technical University, Center of Excellence “VERITAS”, 69. A. K. Protosanova ul., Ust-Kamenogorsk 070004, Republic of Kazakhstan; St. Petersburg Electrotechnical University “LETI”, 5 Professora Popova ul., Saint Petersburg 197022, Russian Federation

Dr. Sci. (Chem.), Professor at the Department of Physical Chemistry, Saint-Petersburg State Technological Institute (Technical University) (Saint-Petersburg, Russian Federation)

Alexey V. Rumyantsev, St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation

Dr. Sci. (Chem.), Head of the Department of Engineering Radioecology and Radiochemical Technology, Saint-Petersburg State Technological Institute (Technical University) (Saint-Petersburg, Russian Federation)

Viktor A. Keskinov, D. Serikbayev East Kazakhstan Technical University, Center of Excellence “VERITAS”, 69. A. K. Protosanova ul., Ust-Kamenogorsk 070004, Republic of Kazakhstan

Cand. Sci. (Chem), Leading Researcher «Veritas» Center, Kazakhstan State Technical University (Ust-Kamenogorsk, Republic of Kazakhstan)

Konstantin N. Semenov, St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation; St. Petersburg State University, 7/9 Universitetskaya Embankment, Saint Petersburg 199034, Russian Federation; Pavlov First Saint Petersburg State Medical University, 6 - 8 L’va Tolstogo st., Saint Petersburg 197022, Russian Federation

Dr. Sci. (Chem.), Professor, Head of the Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University (Saint-Petersburg, Russian Federation)

Valerya A. German, St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation

graduate student at the Department of Physical chemistry, Saint-Petersburg State Technological
Institute (Technical University) (Saint-Petersburg, Russian Federation)

Natalya A. Kulenova, D. Serikbayev East Kazakhstan Technical University, Center of Excellence “VERITAS”, 69. A. K. Protosanova ul., Ust-Kamenogorsk 070004, Republic of Kazakhstan

Cand. Sci. (Chem), Head of «Veritas» Center, Kazakhstan State Technical University (Ust-Kamenogorsk, Republic of Kazakhstan)

Marina V. Charykova, St. Petersburg State University, 7/9 Universitetskaya Embankment, Saint Petersburg 199034, Russian Federation

Dr. Sci. (Geol.), Professor, Head of the Department of Geochemistry of the Faculty of Geology, Saint-Petersburg State University (Saint-Petersburg, Russian Federation)

Mariia V. Keskinova, St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation

Assistant of the Department of Theoretical Foundations of Materials Science, Saint-Petersburg State Technological Institute (Technical University) (Saint-Petersburg, Russian Federation)

Mikhail Yu. Arshinov, St. Petersburg State Institute of Technology, 26 Moskovsky pr., Saint Petersburg 190013, Russian Federation

graduate student at the Department of Physical chemistry, Saint-Petersburg State Technological
Institute (Technical University) (Saint-Petersburg, Russian Federation)

References

Zdanovskii A. B. Patterns in the property changes of mixed solutions*. Proceedings of the salt laboratory AN SSSR. 1936;6: 1-70. (In Russ.)

Ryasanov M. A. Selected chapters from the theory of solutions*. Syktyvkar: SGU Publ.; 1997. 205 p. (In Russ.)

Mikulin G. I. Thermodynamics of mixed solutions of strong electrolytes. Issues of physical chemistry of electrolyte solutions*. Leningrad: Khimiya Publ.: 1968. p. 202–231. (In Russ.)

Charykova M. V., Charykov N. A. Thermodynamic modeling of evaporite sedimentation processes*. S-etersburg:

Nauka Publ.; 2003. 261 p. (In Russ.)

Filippov V. K. Systems complying with Zdanovskii’s rule*. Vestnik of Saint Petersburg university: Physics and Сhemistry. 1977;3: 98–105. (In Russ.)

Charykov N. A., Rumyantsev A. V., Keskinov V. A., Letenko D. G., Charykova M. V. Universal algorithm for calculation of liquid-vapor diagrams of quasi-simple multicomponent systems. Journal of Chemical & Engineering Data. 2024;69(11): 4089–4097. https://doi.org/10.1021/acs.jced.4c00307

Storonkin A. V. Thermodynamics of heterogeneous systems*. Book 1. Part I, II. Leningrad: LGU Publ.; 1967. 467 p. (In Russ.)

Storonkin A. V. Thermodynamics of heterogeneous systems*. Book 2. Part III. Leningrad: LGU Publ.; 1969. 270 p. (In Russ.)

Münster A. Chemische thermodynamik. Berlin: Akademie — Verlag; 1969. 261 p.

Korjinskii A. D. Theoretical bases of mineral paragenesis analysis*. Moscow: Nauka Publ.; 1973. 288 p. (In Russ.)

Filippov V. K. About the connection between chemical potentials, pressure, temperature and composition in multicomponent multiphase systems. In: Aspects of thermodynamics of heterogeneous systems and theory of surface phenomena*. Collection of articles. A. V. Storonkin and V. T. Zharov (eds.). Leningrad: LGU Publ.; 1973. Vol. 2. p. 20–36. (In Russ.)

Filippov V. K. About the conditions of equilibrium and stability of heterogeneous systems. In: Aspects of thermodynamics of heterogeneous systems and theory of surface phenomena*. Collection of articles. V. K. Filippov (ed.). Leningrad: LGU Publ.;1992. Vol. 9. p. 6–33. (In Russ.)

Stromberg A. G., Semchenko D. P. Physical chemistry*. Moscow: Vysshaya shkola Publ.; 2001. 529 p. (In Russ.)

Pitzer K. S., Kim J. J. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed lectrolytes. Journal of the American Chemical Society. 1974;96: 5701–5707. https://doi.org/10.1021/ja00825a004

Rabinovich V. A., Khavin Z. Ya. Brief chemical reference*. Ed. 2-nd: Corr. and add. Leningrad: Khimiya Publ.; 1978. 285 p. (In Russ.). Available at: http://es.niv.ru/doc/dictionary/chemical-manual/articles/660/parcialnyedavleniya-hcl-i-h2o.htm

Chemist’s Handbook*. Ed. 2-nd: Corr. and add. B. P. Nikol’skiy (ed.). Vol. 3. Moscow, Leningrad: Khimiya Publ.; 1964. 339 p. (In Russ.)

Reznik F. Ya. Isopiestic measurement of the vapor pressure in electrolyte solutions. In: Physical chemistry of electrolyte solutions*. G. I. Mikulin (ed.). 1968. p. 222–239. (In Russ.)

Reference book on the solubility of salt systems*. Leningrad: Khimiya Publ.; 1975. Vol. II-1. 552 p. (In Russ.)

Reference book on the solubility of salt systems*. Leningrad: Khimiya Publ.; 1973. Vol. I-2. 568–1069 p. (In Russ.)

Reference book on the solubility of salt systems*. Leningrad: Khimiya Publ.; 1973. Vol. I-1. 567 p. (In Russ.)

Eusseltova J. Solubility of lithium nitrate in solutions of lithium halides. Monatshefte für Chemie - Chemical Monthly. 2005;136(9): 1567–1572. https://doi.org/10.1007/s00706-005-0345-4

Armstrong H., Eyre J., Paddison W. Studies of the processes operative in solutions. In: Proceedings of the Royal Society of London. Series A. 1907;79: 570 and 1911;84: 128.

Storonkin A. V., Markuzin N. P. Investigation of vapor pressure in saturated and unsaturated solutions of potassium chloride in hydrochloric acid*. Russian Journal of Physical Chemistry A. 1955;29(1): 110–119. (In Russ.)

Reference book. Experimental data on the solubility of multicomponent systems. Vol. 2. Quaternary and more complex systems. Book 1, 2*. A. D. Pel’sh (ed.). Leningrad: Khimiya Publ.; 1063 p. (In Russ.)

Efimov N. V., Rozendorn E. R. Linear algebra and multidimensional geometry*. 2023. 552 p. (In Russ.)

Multidimensional geometry*. O. V. Yakunin (ed.). Penza: PSU Pub.; 2013. 156 p. (In Russ.)

Charykov N. A., Rumyantsev A. V., Semenov K. N., … Blokhin A. A. Topological isomorphism of liquid-vapor, fusibility, and solubility diagrams. Analogues of Gibbs–Konovalov and Gibbs–Roozeboom laws for solubility diagrams. Processes. 2023;11(5): 1405. https://doi.org/10.3390/pr11051405

Published
2024-12-04
How to Cite
Charykov, N. A., Rumyantsev, A. V., Keskinov, V. A., Semenov, K. N., German, V. A., Kulenova, N. A., Charykova, M. V., Keskinova, M. V., & Arshinov, M. Y. (2024). A universal algorithm for the calculation of vapor-liquid equilibrium diagrams in quasi-simple multicomponent systems. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(1), 67-85. https://doi.org/10.17308/kcmf.2025.27/12491
Section
Original articles