A universal algorithm for the calculation of vapor-liquid equilibrium diagrams in quasi-simple multicomponent systems
Abstract
The purpose of the study was to consider isothermal vapor-liquid diagrams of quasi-simple systems and to develop a universal algorithm for the calculation of isothermal vapor-liquid diagrams of these systems independent of the type of valence of the electrolyte, the number of components in the system, and the types of solid solutions. The suggested analogues of the three Gibbs–Konovalov and Gibbs–Roozeboom laws are true when moving along the univariant equilibrium lines on the solubility diagrams of systems with a random number of components.
The study did not involve any experiments. The suggested algorithm was applied for the description of solubility (solidliquid) diagrams and vapor-liquid equilibrium diagrams of three- and four-component systems with one, two, or three volatile components. In all the cases, the results of thermodynamic first-principles calculations agreed well with the experimental data presented in the literature.
Both the experimental data presented in the literature and the results of the thermodynamic first-principles calculation performed by the authors are also in good agreement with the suggested analogues of the Gibbs–Konovalov and Gibbs–Roozeboom laws
Downloads
References
Zdanovskii A. B. Patterns in the property changes of mixed solutions*. Proceedings of the salt laboratory AN SSSR. 1936;6: 1-70. (In Russ.)
Ryasanov M. A. Selected chapters from the theory of solutions*. Syktyvkar: SGU Publ.; 1997. 205 p. (In Russ.)
Mikulin G. I. Thermodynamics of mixed solutions of strong electrolytes. Issues of physical chemistry of electrolyte solutions*. Leningrad: Khimiya Publ.: 1968. p. 202–231. (In Russ.)
Charykova M. V., Charykov N. A. Thermodynamic modeling of evaporite sedimentation processes*. S-etersburg:
Nauka Publ.; 2003. 261 p. (In Russ.)
Filippov V. K. Systems complying with Zdanovskii’s rule*. Vestnik of Saint Petersburg university: Physics and Сhemistry. 1977;3: 98–105. (In Russ.)
Charykov N. A., Rumyantsev A. V., Keskinov V. A., Letenko D. G., Charykova M. V. Universal algorithm for calculation of liquid-vapor diagrams of quasi-simple multicomponent systems. Journal of Chemical & Engineering Data. 2024;69(11): 4089–4097. https://doi.org/10.1021/acs.jced.4c00307
Storonkin A. V. Thermodynamics of heterogeneous systems*. Book 1. Part I, II. Leningrad: LGU Publ.; 1967. 467 p. (In Russ.)
Storonkin A. V. Thermodynamics of heterogeneous systems*. Book 2. Part III. Leningrad: LGU Publ.; 1969. 270 p. (In Russ.)
Münster A. Chemische thermodynamik. Berlin: Akademie — Verlag; 1969. 261 p.
Korjinskii A. D. Theoretical bases of mineral paragenesis analysis*. Moscow: Nauka Publ.; 1973. 288 p. (In Russ.)
Filippov V. K. About the connection between chemical potentials, pressure, temperature and composition in multicomponent multiphase systems. In: Aspects of thermodynamics of heterogeneous systems and theory of surface phenomena*. Collection of articles. A. V. Storonkin and V. T. Zharov (eds.). Leningrad: LGU Publ.; 1973. Vol. 2. p. 20–36. (In Russ.)
Filippov V. K. About the conditions of equilibrium and stability of heterogeneous systems. In: Aspects of thermodynamics of heterogeneous systems and theory of surface phenomena*. Collection of articles. V. K. Filippov (ed.). Leningrad: LGU Publ.;1992. Vol. 9. p. 6–33. (In Russ.)
Stromberg A. G., Semchenko D. P. Physical chemistry*. Moscow: Vysshaya shkola Publ.; 2001. 529 p. (In Russ.)
Pitzer K. S., Kim J. J. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed lectrolytes. Journal of the American Chemical Society. 1974;96: 5701–5707. https://doi.org/10.1021/ja00825a004
Rabinovich V. A., Khavin Z. Ya. Brief chemical reference*. Ed. 2-nd: Corr. and add. Leningrad: Khimiya Publ.; 1978. 285 p. (In Russ.). Available at: http://es.niv.ru/doc/dictionary/chemical-manual/articles/660/parcialnyedavleniya-hcl-i-h2o.htm
Chemist’s Handbook*. Ed. 2-nd: Corr. and add. B. P. Nikol’skiy (ed.). Vol. 3. Moscow, Leningrad: Khimiya Publ.; 1964. 339 p. (In Russ.)
Reznik F. Ya. Isopiestic measurement of the vapor pressure in electrolyte solutions. In: Physical chemistry of electrolyte solutions*. G. I. Mikulin (ed.). 1968. p. 222–239. (In Russ.)
Reference book on the solubility of salt systems*. Leningrad: Khimiya Publ.; 1975. Vol. II-1. 552 p. (In Russ.)
Reference book on the solubility of salt systems*. Leningrad: Khimiya Publ.; 1973. Vol. I-2. 568–1069 p. (In Russ.)
Reference book on the solubility of salt systems*. Leningrad: Khimiya Publ.; 1973. Vol. I-1. 567 p. (In Russ.)
Eusseltova J. Solubility of lithium nitrate in solutions of lithium halides. Monatshefte für Chemie - Chemical Monthly. 2005;136(9): 1567–1572. https://doi.org/10.1007/s00706-005-0345-4
Armstrong H., Eyre J., Paddison W. Studies of the processes operative in solutions. In: Proceedings of the Royal Society of London. Series A. 1907;79: 570 and 1911;84: 128.
Storonkin A. V., Markuzin N. P. Investigation of vapor pressure in saturated and unsaturated solutions of potassium chloride in hydrochloric acid*. Russian Journal of Physical Chemistry A. 1955;29(1): 110–119. (In Russ.)
Reference book. Experimental data on the solubility of multicomponent systems. Vol. 2. Quaternary and more complex systems. Book 1, 2*. A. D. Pel’sh (ed.). Leningrad: Khimiya Publ.; 1063 p. (In Russ.)
Efimov N. V., Rozendorn E. R. Linear algebra and multidimensional geometry*. 2023. 552 p. (In Russ.)
Multidimensional geometry*. O. V. Yakunin (ed.). Penza: PSU Pub.; 2013. 156 p. (In Russ.)
Charykov N. A., Rumyantsev A. V., Semenov K. N., … Blokhin A. A. Topological isomorphism of liquid-vapor, fusibility, and solubility diagrams. Analogues of Gibbs–Konovalov and Gibbs–Roozeboom laws for solubility diagrams. Processes. 2023;11(5): 1405. https://doi.org/10.3390/pr11051405
Copyright (c) 2024 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.