Теоретическое и экспериментальное исследование антрадитиофена в различных растворах
Аннотация
Целью нашего исследования было изучить свойства органического полупроводника антрадитиофена с использованием теоретических и экспериментальных методов. В статье рассматривается влияние растворителей на оптические и электрические свойства антрадитиофена. В ходе экспериментов рассчитывались следующие оптоэлектронные свойства: ширина запрещённой зоны, график Тауца, прозрачность, электрическая проводимость, оптические и диэлектрические свойства. В теоретических расчётах на основе определения энергии молекулярных орбиталей HOMO и LUMO рассчитывалась ширина запрещённой зоны. Средняя разность между энергиями HOMO и LUMO составила 2.84 эВ для пяти базисных наборов в газовой фазе. Методом Фурье-ИК-спектроскопии определялись функциональные группы вещества и области, в которых не происходит поглощение. Для пяти базисных наборов эта область наблюдалась в среднем диапазоне длин волн в диапазоне от 1650 см–1 до 3200 см–1. Также проводилась УФ-спектроскопия и спектроскопия в видимом диапазоне. Средняя ширина запрещённой зоны составила 2.59 эВ. Исследование показало, что в молекулах антрадитиофена наблюдается непрямой разрешённый переход.
Скачивания
Литература
Platt A. D., Day J., Subramanian S., Anthony J. E., Ostroverkhova O. ‘Optical, fluorescent, and (photo) conductive properties of high-performance functionalized pentacene and anthradithiophene derivatives. The Journal of Physical Chemistry C. 2009;113(31): 14006–14014. https://doi.org/10.1021/jp904021p
Sekar A., Sivula K. Organic semiconductors as photoanodes for solar-driven photoelectrochemical fuel production.CHIMIA International Journal for Chemistry. 2021;75(3): 169–179. https://doi.org/10.2533/chimia.2021.169
Li H., Brédas J.-L. Developing molecular-level models for organic field-effect transistors. National Science Review. 2021;8(4): nwaa167. https://doi.org/10.1093/nsr/nwaa167
Rojas H. C., Bellani S., Fumagalli F., Tullii G., Leonardi S., Mayer M. T., Schreier M., Grätzel M., Lanzani G., Di Fonzo F. Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating. Energy & Environmental Science. 2016;9(12): 3710–3723. https://doi.org/10.1039/c6ee01655c
Qadr H. M. A molecular dynamics calculation to cascade damage processes. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science. 2020;43(4): 13–16. https://doi.org/10.35219/mms.2020.4.02
Qadr H. M. A molecular dynamics study of temperature dependence of the primary state of cascade damage processes. Russian Journal of Non-Ferrous Metals. 2021;62(5): 561–567. https://doi.org/10.3103/s1067821221050096
Laquindanum J. G., Katz H. E., Lovinger A. J. Synthesis, morphology, and field-effect mobility of anthradithiophenes. Journal of the American Chemical Society. 1998;120(4): 664–672. https://doi.org/10.1021/ja9728381
Zhu G., Sun Y., Li M., Tao C., Zhang X., Yang H., Guo L., Lin. Ionic crosslinked polymer as protective layer in electrochromic supercapacitors for improved electrochemical stability and ion transmission performance. Electrochimica Acta. 2021;365: 137373. https://doi.org/10.1016/j.electacta.2020.137373
Qadr H. M. Effect of ion irradiation on the mechanical properties of high and low copper. Atom Indonesia. 2020;46(1): 47–51. https://doi.org/10.17146/aij.2020.923
Mamada M., Minamiki T., Katagiri H., Tokito S. Synthesis, physical properties, and field-effect mobility of isomerically pure syn-/anti-anthradithiophene derivatives. Organic Letters. 2012;14(16): 4062–4065. https://doi.org/10.1021/ol301626u
Miao Q. (Ed.). Polycyclic arenes and heteroarenes: synthesis, properties, and applications. John Wiley & Sons; 2015. https://doi.org/10.1002/9783527689545
Brédas J.-L., Calbert J. P., da Silva Filho D. A, Cornil J. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. Proceedings of the National Academy of Sciences. 2002;99(9): 5804–5809. https://doi.org/10.1073/pnas.092143399
Hallani R. K., Thorley K. J., Mei Y., Parkin S. R., Jurchescu O. D., Anthony J. E. Structural and electronic properties of crystalline, isomerically pure anthradithiophene derivatives. Advanced Functional Materials. 2016;26(14): 2341–2348. https://doi.org/10.1002/adfm.201502440
Mamada M., Katagiri H., Mizukami M., Honda K., Minamiki T., Teraoka R., Uemura T., Tokito S. Syn-/anti-anthradithiophene derivative isomer effects on semiconducting properties. ACS Applied Materials & Interfaces. 2013;5(19): 9670–9677. https://doi.org/10.1021/am4027136
Schön J., Kloc C., Siegrist T., Laquindanum J., Katz H. Charge transport in anthradithiophene single crystals.
оrganic Electronics. 2001;2: 165–169. https://doi.org/10.1016/s1566-1199(01)00022-2
Qadr H. M. ‘Pressure effects on stopping power of alpha particles in argon gas. Physics of Particles and Nuclei Letters. 2021;18(2): 185–189. https://doi.org/10.1134/s1547477121020151
Kwon O., Coropceanu V., Gruhn N., Durivage J., Laquindanum J., Katz H., Cornil J., Brédas J.-L. Characterization of the molecular parameters determining charge transport in anthradithiophene. The Journal of Chemical Physics. 2004;120(17): 8186–8194. https://doi.org/10.1063/1.1689636
Yang H., Locklin J., Singh B., Bao Z. Organic field-effect transistors with solution-processible thiophene/ phenylene based-oligomer derivative films. Organic Field-Effect Transistors VI, International Society for Optics and Photonics. 2007: 66581A. https://doi.org/10.1117/12.733953
Caricato M., Frisch M .J., Hiscocks J., Frisch M. J. Gaussian 09: IOps Reference, Citeseer. 2009.
Qadr H. M., Mamand D. M. Molecular structure and density functional theory investigation corrosion inhibitors of some oxadiazoles. Journal of Bio-and Tribo-Corrosion. 2021;7(4): 1–8. https://doi.org/10.1007/s40735-021-00566-9
Mamand D. Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets. Journal of Physical Chemistry and Functional Materials. 2019;2(1): 32–36. Режим доступа: https://dergipark.org.tr/en/pub/jphcfum/issue/45047/589803
Mamand D. M., Qadr H. M. Comprehensive spectroscopic and optoelectronic properties of BBL organic semiconductor. Protection of Metals and Physical Chemistry of Surfaces. 2021;57(5): 943–953. https://doi.org/10.1134/s207020512105018x
Görling A. Density-functional theory beyond the Hohenberg-Kohn theorem. Physical Review A. 1999;59(5): 3359. https://doi.org/10.1103/physreva.59.3359
Gilbert T. L. Hohenberg-Kohn theorem for nonlocal external potentials. Physical Review B. 1975; 12(6): 2111. https://doi.org/10.1103/physrevb.12.2111
Mamand D. Theoretical calculations and spectroscopic analysis of gaussian computational examination-NMR, FTIR, UV-Visible, MEP on 2, 4, 6-Nitrophenol. Journal of Physical Chemistry and Functional Materials. 2019;2(2): 77–86. Режим доступа: https://dergipark.org.tr/en/pub/jphcfum/issue/50562/645745
Iliev V., Tomova D., Rakovsky S., Eliyas A., Puma G. L. Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. Journal of Molecular Catalysis A: Chemical. 2010;327(1-2): 51–57. https://doi.org/10.1016/j.molcata.2010.05.012
Aceto M., Agostino A., Fenoglio G., Idone A., Gulmini M., Picollo M., Ricciardi P., Delaney J. K. Characterisation f colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Analytical Methods. 2014;6(5): 1488–1500. https://doi.org/10.1039/c3ay41904e
Wu J., Walukiewicz W., Shan W., Yu K., Ager W. J., Haller E.E., Lu H., Schaff W. J. Effects of the narrow band gap on the properties of InN. Physical Review B. 2002;66(20): 201403. https://doi.org/10.1103/physrevb.66.201403
Orek C., Gündüz B., Kaygili O., Bulut N. Electronic, optical, and spectroscopic analysis of TBADN organic semiconductor: Experiment and theory. Chemical Physics Letters. 2017;678: 130–138. https://doi.org/10.1016/j.cplett.2017.04.050
Herve P., Vandamme L. K. J. General relation between refractive index and energy gap in semiconductors. Infrared physics & technology. 1994;35(4): 609–615. https://doi.org/10.1016/1350-4495(94)90026-4
Hader J., Moloney J., Koch S. Microscopic theory of gain, absorption, and refractive index in semiconductor laser materials-influence of conduction-band nonparabolicity and coulomb-induced intersubband coupling. IEEE Journal of Quantum Electronics. 1999;35(12): 1878–1886. https://doi.org/10.1109/3.806602
Ravindra N., Ganapathy P., Choi J. Energy gap–efractive index relations in semiconductors–An overview. Infrared Physics & Technology. 2007;50(1):21–29. https://doi.org/10.1016/j.infrared.2006.04.001
Linda D., Duclère J.-R., Hayakawa T., Dutreilh-Colas M., Cardinal T., Mirgorodsky A., Kabadou A., Thomas P. Optical properties of tellurite glasses elaborated within the TeO2–Tl2O–Ag2O and TeO2–ZnO–Ag2O ternary systems. Journal of Alloys and Compounds. 2013;561: 151–160. https://doi.org/10.1016/j.jallcom.2013.01.172
Umar S., Halimah M., Chan K., Latif A. Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. Journal of Non-Crystalline Solids. 2017;471: 101–109. https://doi.org/10.1016/j.jnoncrysol.2017.05.018
Maheshvaran K., Linganna K., Marimuthu K. Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses. Journal of Luminescence. 2011;131(12): 2746–2753. https://doi.org/10.1016/j.jlumin.2011.06.047
Yoshino K., Oyama S., Yoneta M. Structural, optical and electrical characterization of undoped ZnMgO film grown by spray pyrolysis method. Journal of Materials Science: Materials in Electronics. 2008;19(2): 203–209. https://doi.org/10.1007/s10854-007-9333-237. Jiménez-González A. E, Soto Urueta J. A.,
Suárez-Parra R. Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique. Journal of Crystal Growth. 1998;192(3-4): 430–438. https://doi.org/10.1016/s0022-0248(98)00422-9
Sassi M., Oueslati A., Moutia N., Khirouni K., Gargouri M. A study of optical absorption and dielectric properties in lithium chromium diphosphate compound. Ionics. 2017;2394): 847–855. https://doi.org/10.1007/s11581-016-1903-y
Xie P., Wang Z., Zhang Z., Fan R., Cheng C., Liu H., Liu Y., Li T., Yan C., Wang N. Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. Journal of Materials Chemistry C. 2018;6(19): 5239–5249. https://doi.org/10.1039/c7tc05911f
Yang K., Huang X., Huang Y., Xie L., Jiang P. Fluoro-polymer@ BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chemistry of Materials. 2013;25(11): 2327–2338. https://doi.org/10.1021/cm4010486
Leboeuf M., Köster A., Salahub D. Approximation of the molecular electrostatic potential in a gaussian density functional method. Theoretical Chemistry Accounts. 1997;96(1): 23–30. https://doi.org/10.1007/s002140050199
Ramalingam S., Babu P. D. S., Periandy S., Fereyduni E. Vibrational investigation, molecular orbital studies and molecular electrostatic potential map analysis on 3-chlorobenzoic acid using hybrid computational calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;84(1): 210–220. https://doi.org/10.1016/j.saa.2011.09.030
Ramalingam S., Karabacak M., Periandy S., Puviarasan N., Tanuja D. Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;96: 207–220. https://doi.org/10.1016/j.saa.2012.03.090
Copyright (c) 2022 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.