An investigation of the electronic structure and optoelectronic properties of 4-((2-hydroxy-3-methoxybenzylidene)amino)-N-(thiazol- 2-yl) benzene sulfonamide

Keywords: Optoelectronic, UV-visible spectroscopy, HOMO-LUMO, DFT

Abstract

Molecules of 4-((2-hydroxy-3-methoxybenzylidene)amino)-N-(thiazol-2-yl)benzene sulfonamide were investigated at varying concentrations in dimethyl sulfoxide (DMSO). Different temperatures were employed to assess bandgap energies, Tauc plots, refractive indices, optical and electrical properties, and dielectric constants. The refractive index was determined through a straightforward model based on energy gap data and subsequently compared to experimental values. For the examination of the materials’ optical properties, reflection and reflection loss at plasma frequencies were considered as they play a crucial role. Density functional theory (DFT) with a 6-311G++ (d, p) basis set and Becke’s three-parameter hybrid (B3LYP) level of theory were utilized through Gaussian software to conduct the studies. Chemical reactivity and selectivity
parameters, including HOMO-LUMO, global hardness, softness, electronegativity, electrophilicity, nucleophilicity, chemical potential, bandgap energy, and electron affinity, were computed. Becke’s three-parameter hybrid exchange-correlation functional (B3LYP) level was employed for optimizing the geometry of the title molecule

Downloads

Download data is not yet available.

Author Biographies

Dyari Mustafa Mamand, University of Raparin, College of Science, Department of Physics, Sulaymaniyah, Iraq

MSc in Atomic and
Molecular Physics, Department of Physics, University
of Raparin (Sulaymaniyah, Iraq)

Dara Muhammed Aziz, University of Raparin, College of Science, Department of Chemistry, Sulaymaniyah, Iraq

PhD in Organic Chemistry,
Department of Chemistry, University of Raparin
(Sulaymaniyah, Iraq)

Hiwa Mohammad Qadr, University of Raparin, College of Science, Department of Physics, Sulaymaniyah, Iraq

MSc in Physics, Lecture of
the Department of Physics, University of Raparin
(Sulaymaniyah, Iraq)

References

Shafiee A., Ghadiri E., Kassis J., Williams D., Atala A. Energy band gap investigation of biomaterials: A omprehensive material approach for biocompatibility of medical electronic devices. Micromachines. 2020;11(1): 105. https://doi.org/10.3390/mi11010105

Mamand D. M., Qadr H. M. Density functional theory and computational simulation of the molecular structure on corrosion of carbon steel in acidic media of some amino acids. Russian Journal of Physical Chemistry A. 2022;96: 2155–2165. https://doi.org/10.1134/s0036024422100193

Qadr H. M., Mamand D. Measuring energy loss of alpha particles in hydrogen gas. El-Cezeri Fen ve Mühendislik Dergisi. 2023;10: 433–438. https://doi.org/10.31202/ecjse.1195041

Vieira D. F., Avellaneda C. O., Pawlicka A. Conductivity study of a gelatin-based polymer electrolyte. Electrochimica Acta. 2007;53: 1404–1408. https://doi.org/10.1016/j.electacta.2007.04.034

Fujita S.-I., Kawamori H., Honda D., Yoshida H., Arai M. Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions. Applied Catalysis B: Environmental. 2016;181: 818–824. https://doi.org/10.1016/j.apcatb.2015.08.048

Nan H., Ping Y., Xuan C., … Tingfei, X. Blood compatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition. Biomaterials. 1998;19(7-9): 771–776. https://doi.org/10.1016/s0142-9612(98)00212-9

Qadr H. M. A Molecular dynamics study of temperature dependence of the primary state of cascade damage processes. Russian Journal of Non-Ferrous Metals. 2021;62: 561-567. https://doi.org/10.3103/s1067821221050096

Abram R. A., Childs G. N., Saunderson P. A. Band gap narrowing due to many-body effects in silicon and gallium arsenide. Journal Of Physics C: Solid State Physics. 1984;17: 6105. https://doi.org/10.1088/0022-3719/17/34/012

Hudgins J. L., Simin G. S., Santi E., Khan M. A. An assessment of wide bandgap semiconductors for power devices. Ieee Transactions On Power Electronics. 2003;18: 907–914. https://doi.org/10.1109/tpel.2003.810840

Rawal S. B., Bera S., Lee D., Jang D.-J., Lee W. I. Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: Effect of their relative energy band positions on the photocatalytic efficiency. Catalysis Science & Technology. 2013;3: 1822–1830. https://doi.org/10.1039/c3cy00004d

Örek C., Arslan F., Gündüz B., Kaygili O., Bulut N. Comparison of experimental photonic and refractive index characteristics of the TBADN films with their theoretical counterparts. Chemical Physics Letters. 2018;696: 12-18. https://doi.org/10.1016/j.cplett.2018.02.035

Orek C., Gündüz B., Kaygili O., Bulut N. Electronic, optical, and spectroscopic analysis of TBADN organic semiconductor: Experiment and theory. Chemical Physics Letters. 2017;678: 130–138. https://doi.org/10.1016/j.cplett.2017.04.050

Mohan S., Kato E., Drennen Iii J. K., Anderson C. A. Refractive index measurement of pharmaceutical solids: A review of measurement methods and pharmaceutical applications. Journal of Pharmaceutical Sciences. 2019;108: 3478–3495. https://doi.org/10.1016/j.xphs.2019.06.029

Qadr H. M. Investigation of gamma ray buildup factor for some shielding absorber. Cumhuriyet Science Journal. 2022;43: 520–525. https://doi.org/10.17776/csj.1098571

Chaudhary A., Nagaich U., Gulati N., Sharma V. K., Khosa R. L., Partapur M. U. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. Journal of Advanced Pharmacy Education and Research. 2012;2: 32–67.

Al-Otaibi J. S., Mary Y. S., Thomas R., Kaya S. Detailed electronic structure, physico-chemical properties, excited state properties, virtual bioactivity screening and sers analysis of three guanine based antiviral drugs valacyclovir HCl hydrate, acyclovir and ganciclovir. Polycyclic Aromatic Compounds. 2022;42: 1260–1270. https://doi.org/10.1080/10406638.2020.1773876

Mamand D. M., Awla A. H., Anwer T. M. K., Qadr H. M. Quantum chemical study of heterocyclic organic compounds on the corrosion inhibition. Chimica Techno Acta. 2022;9: 20229203. https://doi.org/10.15826/chimtech.2022.9.2.03

Qadr H. M. Effect of ion irradiation on the mechanical properties of high and low copper. Atom Indonesia. 2020;46: 47–51. https://doi.org/10.17146/aij.2020.923

Zhang J., Tang H., Liu Z., Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. International Journal of Nanomedicine. 2017;12: 8483. https://doi.org/10.2147/ijn.s148359

Qadr H. M. A molecular dynamics calculation to cascade damage processes. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science. 2020;43: 13–16. https://doi.org/10.35219/mms.2020.4.02

Sechadri S., Rasheed M. P., Sangeetha R. Molecular structure, spectroscopic (FTIR, FT-Raman, 13C and 1H NMR, UV), polarizability and first-order hyperpolarizability, HOMO–LUMO analysis of 2,4-difluoroacetophenone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;7: 56–70. https://doi.org/10.1016/j.saa.2014.09.069

Aziz D. M., Azeez H. J. Synthesis of new b‑lactam-N-(thiazol-2-yl)benzene sulfonamide hybrids: Their in vitro antimicrobial and in silico molecular docking studies. Journal of Molecular Structure. 2020;1222: 128904. https://doi.org/10.1016/j.molstruc.2020.128904

Brisdon A. K. Inorganic spectroscopic methods. New York: Oxford University Press; 1998. https://doi.org/10.1093/hesc/9780198559498.001.0001

Coskun D., Gunduz B., Coskun M. F. Synthesis, characterization and significant optoelectronic parameters of 1-(7-methoxy-1-benzofuran-2-yl) substituted chalcone derivatives. Journal of Molecular Structure. 2019;1178: 261–267. https://doi.org/10.1016/j.molstruc.2018.10.043

Choi W. S., Yoon J.-G. Optical characterization of band gap graded ZnMgO films. Solid State Communications. 2012;152: 345–348. https://doi.org/10.1016/j.ssc.2011.12.019

Tsukazaki A., Akasaka S., Nakahara K., … Kawasaki M. Observation of the fractional quantum Hall effect in an oxide. Nature Materials. 2010;9: 889–893. https://doi.org/10.1038/nmat2874

Garimella S. V., Persoons T., Weibel J. A., Gektin V. Electronics thermal management in information and communications technologies: Challenges and future directions. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2016;7: 1191–1205. https://doi.org/10.1109/tcpmt.2016.2603600

Trew R. J. Wide bandgap semiconductor transistors for microwave power amplifiers. IEEE Microwave Magazine. 2000;1: 46–54. https://doi.org/10.1109/6668.823827

Neudeck P. G., Okojie R. S., Chen L.-Y. Hightemperature electronics - a role for wide bandgap semiconductors? Proceedings of The Ieee. 2002;90: 1065–1076. https://doi.org/10.1109/jproc.2002.1021571

Mamand D. M., Anwer T. M. K., Qadr H. M. Theoretical investigation on corrosion inhibition effect of oxadiazole: Dft calculations. Oxidation Communications. 2022;45: 600-267.

Mamand D. M., Qadr H. M. Corrosion inhibition efficiency of quinoxalines based on electronic structure and quantum computational analysis. Revue Roumaine de Chimie. 2023;68: 435–446.

Cassabois G., Valvin P., Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photonics. 2016;10: 262–266. https://doi.org/10.1038/nphoton.2015.277

Mamand D. M., Anwer T. M., Qadr H. M., Mussa C. H. Investigation of spectroscopic and optoelectronic properties of phthalocyanine molecules. Russian Journal of General Chemistry. 2022;92: 1827–1838. https://doi.org/10.1134/s1070363222090249

Schütz A., Günthner M., Motz G., Greißl O., Glatzel U. Characterisation of novel precursor-derived ceramic coatings with glass filler particles on steel substrates. Surface and Coatings Technology. 2012;207: 319–327. https://doi.org/10.1016/j.surfcoat.2012.07.013

Tripathy S. K. Refractive indices of semiconductors from energy gaps. Optical Materials. 2015;46: 240–246. https://doi.org/10.1016/j.optmat.2015.04.026

Qadr H. M., Mamand D. M. A Computational study of substituent effect 1, 3, 4-thiadiazole on corrosion inhibition. Azerbaijan Chemical Journal. 2023; 19–29. https://doi.org/10.32737/0005-2531-2023-2-19-29

Mamad D. M., Omer P. K., Rasul H. H., Qadr H. M. A Theoretical study of structure and corrosion inhibition of some heterocyclic imidazoles: DFT investigation. Surface Engineering and Applied Electrochemistry. 2023;59: 489–501. https://doi.org/10.3103/s1068375523040099

Mamad D. M., Qadr H. M. Quantum computations and density functional theory on corrosion inhibition efficiency of BIA, HBT, MBI and PIZ compounds. Himia, Fizika ta Tehnologia Poverhni. 2023;14: 159–172. https://doi.org/10.15407/hftp14.02.159

Herve P., Vandamme L. K. J. General relation between refractive index and energy gap in semiconductors. Infrared Physics & Technology. 1994;35: 609–615. https://doi.org/10.1016/1350-4495(94)90026-4

Reddy R. R., Ahammed Y. N. A study on the Moss relation. Infrared Physics & Technology. 1995;36: 825–830.https://doi.org/10.1016/1350-4495(95)00008-m

Ravindra N. M., Ganapathy P., Choi J. Energy gap–refractive index relations in semiconductors – An overview. Infrared Physics & Technology. 2007;50: 21–29. https://doi.org/10.1016/j.infrared.2006.04.001

Aly K. M., Esmail E. Refractive index of salt water: effect of temperature. Optical Materials. 1993;2: 195–199.https://doi.org/10.1016/0925-3467(93)90013-q

Mamand D. M., Qadr H. M. Corrosion inhibition efficiency and quantum chemical studies of some organic compounds: theoretical evaluation. Corrosion Reviews. 2023;41: 427–441. https://doi.org/10.1515/corrrev-2022-0085

Wesely M. L. The combined effect of temperature and humidity fluctuations on refractive index. Journal of Applied Meteorology. 1976; 43–49. https://doi.org/10.1175/1520-0450(1976)015<0043:tceota>2.0.co;2

Mamand D. M., Azeez Y. H., Qadr H. M. Monte Carlo and DFT calculations on the corrosion inhibition efficiency of some benzimide molecules. Mongolian Journal Of Chemistry. 2023;24: 1–10. https://doi.org/10.5564/mjc.v24i50.2435

Tripathy S. K., Pattanaik A. Optical and electronic properties of some semiconductors from energy gaps. Optical Materials. 2016;53: 123–133. https://doi.org/10.1016/j.optmat.2016.01.012

Dresselhaus M. S. Solid State Physics part II Optical properties of solids. Lecture Notes. Massachusetts Institute of Technology, Cambridge, Ma; 2001;17: 15–16.

Patterson J. D., Bailey B. C., Patterson J. D., Bailey B. C. Optical properties of solids. In: Solid-State Physics. Springer, Cham.; 2018. 649–704. https://doi.org/10.1007/978-3-319-75322-5_10

Dalven R. Introduction to applied solid state physics: Topics in the applications of semiconductors, superconductors, ferromagnetism, and the nonlinear optical properties of solids. Springer Science & Business Media; 2012.

Dong H. M., Zhang J., Peeters F. M., Xu W Optical conductance and transmission in bilayer graphene. Journal of Applied Physics. 2009;106: 043103. https://doi.org/10.1063/1.3200959

Yücedağ I., Altındal Ş., Tataroğlu A. On the profile of frequency dependent series resistance and dielectric constant in MIS structure. Microelectronic Engineering. 2007;84: 180–186. https://doi.org/10.1016/j.mee.2006.10.071

Dege N., Gökce H., Doğan O. E., … Sert Y. Quantum computational, spectroscopic investigations on N-(2-((2-chloro-4,5-dicyanophenyl)amino)ethyl)-4-methylbenzenesulfonamide by DFT/TD-DFT with different solvents, molecular docking and druglikeness researches. Colloids And Surfaces A: Physicochemical and Engineering Aspects. 2022;638: 128311. https://doi.org/10.1016/j.colsurfa.2022.128311

Mamand D. M., Qadr H. M. Comprehensive spectroscopic and optoelectronic properties of BBL organic semiconductor. Protection of Metals and Physical Chemistry of Surfaces. 2021;57: 943–53. https://doi.org/10.1134/s207020512105018x

Mamand D. M., Qadr H. M. Optoelectronic properties of benzimidazobenzophenanthroline thin film. Russian Microelectronics. 2023;52: 325–336. https://doi.org/10.1134/s1063739723700531

Qadr H. M., Mamand D. M. Molecular structure and density functional theory investigation corrosion inhibitors of some oxadiazoles. Journal of Bio- and Tribo-Corrosion. 2021;7: 140. https://doi.org/10.1007/s40735-021-00566-9

Putz M. V., Russo N., Sicilia E. About the Mulliken electronegativity in DFT. Theoretical Chemistry Accounts. 2005;114: 38–45. https://doi.org/10.1007/s00214-005-0641-4

Medimagh M., Mleh C. B., Issaoui N., … Bousiakoug L. G.. DFT and molecular docking study of the effect of a reen solvent (water and DMSO) on the structure, MEP, and FMOs of the 1-ethylpiperazine-1,4-diium bis(hydrogenoxalate) compound. Compound. Journal Of Molecular Liquids. 2023;369: 120851. https://doi.org/10.1016/j.molliq.2022.120851

Ramalingam S., Babu P. D. S., Periandy S., Fereyduni E. Vibrational investigation, molecular orbital studies and molecular electrostatic potential map analysis on 3-chlorobenzoic acid using hybrid computational calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;84: 210–220. https://doi.org/10.1016/j.saa.2011.09.030

Mamand D. M., Rasul H. H., Omer P. K., Qadr H. M. Theoretical and experimental investigation on ADT organic semiconductor in different solvents. Condensed Matter And Interphases. 2022;24(2): 227–42. https://doi.org/10.17308/kcmf.2022.24/9263

Published
2024-01-31
How to Cite
Mamand, D. M., Aziz, D. M., & Qadr, H. M. (2024). An investigation of the electronic structure and optoelectronic properties of 4-((2-hydroxy-3-methoxybenzylidene)amino)-N-(thiazol- 2-yl) benzene sulfonamide. Condensed Matter and Interphases, 26(1), 88-103. https://doi.org/10.17308/kcmf.2024.26/11811
Section
Original articles

Most read articles by the same author(s)