Theoretical and experimental investigation on ADT organic semiconductor in different solvents
Abstract
The purpose of this work is to investigate experimental and theoretical methods for the properties of (ADTs) organic semiconductors. The effect of solvent on optical and electrical on Anthradithiophene (ADT) characteristics was investigated. The optoelectronic properties associated with experimental work consists of bandgap energy, Tauc plot, transparency, electrical and optical conductance and dielectric properties calculated. For theoretical calculations, firstly, HOMO and LUMO have been used for the computation of the bandgap energy. The average bandgap energy between HOMO and LUMO is found to be 2.84 eV by using five basis sets in gas phases. After that, the FTIR has been elucidated. In addition, to determine the functional group, and determined the important region did not take place absorption. In general, this region did not
occur absorption which is around between 1650 cm-1 and 3200 cm-1 by using five basis sets. The UV-Vis spectroscopy was elucidated. Furthermore, to determine the energy band-gap, the average energy band gap was found to be 2.59 eV, and it was determined the correct transition type. The ADT molecule exhibited the indirect allowed transition.
Downloads
References
Platt A. D., Day J., Subramanian S., Anthony J. E., Ostroverkhova O. ‘Optical, fluorescent, and (photo) conductive properties of high-performance functionalized pentacene and anthradithiophene derivatives. The Journal of Physical Chemistry C. 2009;113(31): 14006–14014. https://doi.org/10.1021/jp904021p
Sekar A., Sivula K. Organic semiconductors as photoanodes for solar-driven photoelectrochemical fuel production.CHIMIA International Journal for Chemistry. 2021;75(3): 169–179. https://doi.org/10.2533/chimia.2021.169
Li H., Brédas J.-L. Developing molecular-level models for organic field-effect transistors. National Science Review. 2021;8(4): nwaa167. https://doi.org/10.1093/nsr/nwaa167
Rojas H. C., Bellani S., Fumagalli F., Tullii G., Leonardi S., Mayer M. T., Schreier M., Grätzel M., Lanzani G., Di Fonzo F. Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating. Energy & Environmental Science. 2016;9(12): 3710–3723. https://doi.org/10.1039/c6ee01655c
Qadr H. M. A molecular dynamics calculation to cascade damage processes. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science. 2020;43(4): 13–16. https://doi.org/10.35219/mms.2020.4.02
Qadr H. M. A molecular dynamics study of temperature dependence of the primary state of cascade damage processes. Russian Journal of Non-Ferrous Metals. 2021;62(5): 561–567. https://doi.org/10.3103/s1067821221050096
Laquindanum J. G., Katz H. E., Lovinger A. J. Synthesis, morphology, and field-effect mobility of anthradithiophenes. Journal of the American Chemical Society. 1998;120(4): 664–672. https://doi.org/10.1021/ja9728381
Zhu G., Sun Y., Li M., Tao C., Zhang X., Yang H., Guo L., Lin. Ionic crosslinked polymer as protective layer in electrochromic supercapacitors for improved electrochemical stability and ion transmission performance. Electrochimica Acta. 2021;365: 137373. https://doi.org/10.1016/j.electacta.2020.137373
Qadr H. M. Effect of ion irradiation on the mechanical properties of high and low copper. Atom Indonesia. 2020;46(1): 47–51. https://doi.org/10.17146/aij.2020.923
Mamada M., Minamiki T., Katagiri H., Tokito S. Synthesis, physical properties, and field-effect mobility of isomerically pure syn-/anti-anthradithiophene derivatives. Organic Letters. 2012;14(16): 4062–4065. https://doi.org/10.1021/ol301626u
Miao Q. (Ed.). Polycyclic arenes and heteroarenes: synthesis, properties, and applications. John Wiley & Sons; 2015. https://doi.org/10.1002/9783527689545
Brédas J.-L., Calbert J. P., da Silva Filho D. A, Cornil J. Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport. Proceedings of the National Academy of Sciences. 2002;99(9): 5804–5809. https://doi.org/10.1073/pnas.092143399
Hallani R. K., Thorley K. J., Mei Y., Parkin S. R., Jurchescu O. D., Anthony J. E. Structural and electronic properties of crystalline, isomerically pure anthradithiophene derivatives. Advanced Functional Materials. 2016;26(14): 2341–2348. https://doi.org/10.1002/adfm.201502440
Mamada M., Katagiri H., Mizukami M., Honda K., Minamiki T., Teraoka R., Uemura T., Tokito S. Syn-/anti-anthradithiophene derivative isomer effects on semiconducting properties. ACS Applied Materials & Interfaces. 2013;5(19): 9670–9677. https://doi.org/10.1021/am4027136
Schön J., Kloc C., Siegrist T., Laquindanum J., Katz H. Charge transport in anthradithiophene single crystals.
оrganic Electronics. 2001;2: 165–169. https://doi.org/10.1016/s1566-1199(01)00022-2
Qadr H. M. ‘Pressure effects on stopping power of alpha particles in argon gas. Physics of Particles and Nuclei Letters. 2021;18(2): 185–189. https://doi.org/10.1134/s1547477121020151
Kwon O., Coropceanu V., Gruhn N., Durivage J., Laquindanum J., Katz H., Cornil J., Brédas J.-L. Characterization of the molecular parameters determining charge transport in anthradithiophene. The Journal of Chemical Physics. 2004;120(17): 8186–8194. https://doi.org/10.1063/1.1689636
Yang H., Locklin J., Singh B., Bao Z. Organic field-effect transistors with solution-processible thiophene/ phenylene based-oligomer derivative films. Organic Field-Effect Transistors VI, International Society for Optics and Photonics. 2007: 66581A. https://doi.org/10.1117/12.733953
Caricato M., Frisch M .J., Hiscocks J., Frisch M. J. Gaussian 09: IOps Reference, Citeseer. 2009.
Qadr H. M., Mamand D. M. Molecular structure and density functional theory investigation corrosion inhibitors of some oxadiazoles. Journal of Bio-and Tribo-Corrosion. 2021;7(4): 1–8. https://doi.org/10.1007/s40735-021-00566-9
Mamand D. Determination the band gap energy of poly benzimidazobenzophenanthroline and comparison between HF and DFT for three different basis sets. Journal of Physical Chemistry and Functional Materials. 2019;2(1): 32–36. Режим доступа: https://dergipark.org.tr/en/pub/jphcfum/issue/45047/589803
Mamand D. M., Qadr H. M. Comprehensive spectroscopic and optoelectronic properties of BBL organic semiconductor. Protection of Metals and Physical Chemistry of Surfaces. 2021;57(5): 943–953. https://doi.org/10.1134/s207020512105018x
Görling A. Density-functional theory beyond the Hohenberg-Kohn theorem. Physical Review A. 1999;59(5): 3359. https://doi.org/10.1103/physreva.59.3359
Gilbert T. L. Hohenberg-Kohn theorem for nonlocal external potentials. Physical Review B. 1975; 12(6): 2111. https://doi.org/10.1103/physrevb.12.2111
Mamand D. Theoretical calculations and spectroscopic analysis of gaussian computational examination-NMR, FTIR, UV-Visible, MEP on 2, 4, 6-Nitrophenol. Journal of Physical Chemistry and Functional Materials. 2019;2(2): 77–86. Режим доступа: https://dergipark.org.tr/en/pub/jphcfum/issue/50562/645745
Iliev V., Tomova D., Rakovsky S., Eliyas A., Puma G. L. Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. Journal of Molecular Catalysis A: Chemical. 2010;327(1-2): 51–57. https://doi.org/10.1016/j.molcata.2010.05.012
Aceto M., Agostino A., Fenoglio G., Idone A., Gulmini M., Picollo M., Ricciardi P., Delaney J. K. Characterisation f colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Analytical Methods. 2014;6(5): 1488–1500. https://doi.org/10.1039/c3ay41904e
Wu J., Walukiewicz W., Shan W., Yu K., Ager W. J., Haller E.E., Lu H., Schaff W. J. Effects of the narrow band gap on the properties of InN. Physical Review B. 2002;66(20): 201403. https://doi.org/10.1103/physrevb.66.201403
Orek C., Gündüz B., Kaygili O., Bulut N. Electronic, optical, and spectroscopic analysis of TBADN organic semiconductor: Experiment and theory. Chemical Physics Letters. 2017;678: 130–138. https://doi.org/10.1016/j.cplett.2017.04.050
Herve P., Vandamme L. K. J. General relation between refractive index and energy gap in semiconductors. Infrared physics & technology. 1994;35(4): 609–615. https://doi.org/10.1016/1350-4495(94)90026-4
Hader J., Moloney J., Koch S. Microscopic theory of gain, absorption, and refractive index in semiconductor laser materials-influence of conduction-band nonparabolicity and coulomb-induced intersubband coupling. IEEE Journal of Quantum Electronics. 1999;35(12): 1878–1886. https://doi.org/10.1109/3.806602
Ravindra N., Ganapathy P., Choi J. Energy gap–efractive index relations in semiconductors–An overview. Infrared Physics & Technology. 2007;50(1):21–29. https://doi.org/10.1016/j.infrared.2006.04.001
Linda D., Duclère J.-R., Hayakawa T., Dutreilh-Colas M., Cardinal T., Mirgorodsky A., Kabadou A., Thomas P. Optical properties of tellurite glasses elaborated within the TeO2–Tl2O–Ag2O and TeO2–ZnO–Ag2O ternary systems. Journal of Alloys and Compounds. 2013;561: 151–160. https://doi.org/10.1016/j.jallcom.2013.01.172
Umar S., Halimah M., Chan K., Latif A. Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. Journal of Non-Crystalline Solids. 2017;471: 101–109. https://doi.org/10.1016/j.jnoncrysol.2017.05.018
Maheshvaran K., Linganna K., Marimuthu K. Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses. Journal of Luminescence. 2011;131(12): 2746–2753. https://doi.org/10.1016/j.jlumin.2011.06.047
Yoshino K., Oyama S., Yoneta M. Structural, optical and electrical characterization of undoped ZnMgO film grown by spray pyrolysis method. Journal of Materials Science: Materials in Electronics. 2008;19(2): 203–209. https://doi.org/10.1007/s10854-007-9333-237. Jiménez-González A. E, Soto Urueta J. A.,
Suárez-Parra R. Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique. Journal of Crystal Growth. 1998;192(3-4): 430–438. https://doi.org/10.1016/s0022-0248(98)00422-9
Sassi M., Oueslati A., Moutia N., Khirouni K., Gargouri M. A study of optical absorption and dielectric properties in lithium chromium diphosphate compound. Ionics. 2017;2394): 847–855. https://doi.org/10.1007/s11581-016-1903-y
Xie P., Wang Z., Zhang Z., Fan R., Cheng C., Liu H., Liu Y., Li T., Yan C., Wang N. Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. Journal of Materials Chemistry C. 2018;6(19): 5239–5249. https://doi.org/10.1039/c7tc05911f
Yang K., Huang X., Huang Y., Xie L., Jiang P. Fluoro-polymer@ BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chemistry of Materials. 2013;25(11): 2327–2338. https://doi.org/10.1021/cm4010486
Leboeuf M., Köster A., Salahub D. Approximation of the molecular electrostatic potential in a gaussian density functional method. Theoretical Chemistry Accounts. 1997;96(1): 23–30. https://doi.org/10.1007/s002140050199
Ramalingam S., Babu P. D. S., Periandy S., Fereyduni E. Vibrational investigation, molecular orbital studies and molecular electrostatic potential map analysis on 3-chlorobenzoic acid using hybrid computational calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;84(1): 210–220. https://doi.org/10.1016/j.saa.2011.09.030
Ramalingam S., Karabacak M., Periandy S., Puviarasan N., Tanuja D. Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;96: 207–220. https://doi.org/10.1016/j.saa.2012.03.090
Copyright (c) 2022 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.