Structural features of the active centre and quaternary structure of inulinase

  • Vladimir F. Selemenev Voronezh State University, Voronezh
  • Irina V. Shkutina Санкт-Петербургский государственный педиатрический медицинский университет, Санкт-Петербург
  • Natalia V. Mironenko Voronezh State University, Voronezh
  • Natalia A. Belanova Voronezh State University, Voronezh
  • Liliya A. Sinyaeva Voronezh State University, Voronezh
  • Anastasiya A. Belanova Voronezh State Medical University named after N.N. Burdenko, Voronezh
  • Lyudmila N. Kolomiets Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow
Keywords: inulinase, enzyme, structure, IR spectroscopy.

Abstract

Now many researchers started to pay attention to the fact that not only traditional sorbents and ion exchangers, but also a number of natural components contained in plant and animal organisms have the ability to absorb other organic molecules and ions, enter into complex formation reactions with metal ions, and exhibit catalytic properties. Such natural substances with sorption and ion-exchange properties include aminopolysaccharides (chitin, chitosan), nucleic and ribonucleic acids, saponins, and enzymes. The provided list of substances can be classified as high-molecular compounds with sorption, ligand and catalytic properties. This study presents the results of the investigation of the functional groups of the active centre of inulinase and the features of its quaternary structure. It was established that the enzyme has a quaternary structure, represented by two subunits with Mr 76900 Da and 10140 Da, which have catalytic activity. The imidazole radical of histidine, SH groups and carboxyl groups take part in the formation of the enzyme-substrate complex. The purpose of this study was investigation of the functional groups of the active centre and some features of the quaternary structure of inulinase.

In this study, we used a preparation of inulinase isolated from Aspergillus awamori Ts2250, purified by ion exchange chromatography on columns with diethylaminoethylcellulose (DEAE): [-O-(CH2)2-N(C2H5)2]. The homogeneity of the drug was confirmed by gel electrophoresis [24-25]. The catalytic activity of inulinase was determined on the substrate inulin (Spofa, Czech Republic) spectrophotometrically using resorcinol at λ = 540 nm, and the molecular weight was determined by gel chromatography on Sephadex G-200. The presence of electrophilic groups COO- was determined using the Dixon method [28], and also by IR spectroscopy on a Vertex-70 device (Bruker, Germany) in the frequency range 4000-400 cm-1.

The active centre of the enzyme includes γ and δ-carboxyl groups of aspartic and glutamic acid residues, respectively. Hydrogen ion H+ splits off from the carboxyl group of the glutamine residue of the enzyme and binds to oxygen connecting rings A and B of the substrate. As a result, the oxygen bond with the ring is broken, and the carbon located in position I of ring A forms a carbonium ion, which is stabilized by COO- group of the aspartic acid residue of the enzyme. An ОН- ion delivered by a water molecule interacts with carbonium ion, and H+ ion of water is fixed in the place of H+ ion lost by the glutamic acid residue in inulinase. After this, inulin molecules leave the enzyme, freeing it for subsequent reaction with the substrate. However, this mechanism is not the only one. Histidine imidazole also takes part in the formation of the enzyme-substrate complex. When interacting with inulin, the imidazole group is hydrogen bonded to the oxygen connecting rings A and B of the substrate. There is also an orientation of the COO- ion of the enzyme ion relative to the resulting carbonium ion in ring A. Subsequently, Н+ and ОН- ions from water molecules are fixed in inulinase in place of H+, lost Glu, and OH- is fixed on the carbonium ion of inulin.

Downloads

Download data is not yet available.

Author Biographies

Vladimir F. Selemenev, Voronezh State University, Voronezh

DSc in chemistry, Voronezh State University, Voronezh, Russia, e-mail: common@chem.vsu.ru

Irina V. Shkutina, Санкт-Петербургский государственный педиатрический медицинский университет, Санкт-Петербург

PhD in Biology, Associate Professor of the Department of General and Medical Chemistry named after Prof. V.V. Khorunzhy, St. Petersburg State Pediatric Medical University, St. Petersburg, Russia, e-mail: irn55@mail.ru

Natalia V. Mironenko, Voronezh State University, Voronezh

 PhD in Chemistry, Assistant Professor of the Department of Analytical Chemistry, Voronezh State University, Voronezh, Russia, E-mail: natashamir@yandex.ru

Natalia A. Belanova, Voronezh State University, Voronezh

PhD in Chemistry, the assistant of the Department of Analytical Chemistry, Voronezh State University, Voronezh, Russia; e-mail: belanovana@mail.ru

Liliya A. Sinyaeva, Voronezh State University, Voronezh

PhD in Chemistry, the senior engineer of the VSU Centre for the Collective Use of Scientific Equipment, Voronezh State University, Russia; e-mail: liliya.sinyaevavsu@mail.ru

Anastasiya A. Belanova, Voronezh State Medical University named after N.N. Burdenko, Voronezh

student, Burdenko Voronezh State Medical University, Russia, e-mail: anastasiyabelanova@mail.ru

Lyudmila N. Kolomiets, Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow

researcher, Ph.D. Frumkin Institute of Phisical and Electrochemistry, Moscow, Russia; e-mail: kolom_moscow@mail.ru

References

Zherebtsov N.A., Popova T.N., Artyukhov V.G. Biokhimiya. Voronezh, VGU, 2002, 696 р. (In Russ.)

Kovaleva T.A., Kholyavka M.G. Is-sledovanie struktur nykhosobennostei inulinaz iz razlichnykh produtsentov metodom IK-spektrofotometrii. Voprosy biologicheskoi, meditsinskoi I farmatsev-ticheskoi khimii. 2011; 1: 3-7. (In Russ.)

Mironenko N.V., Selemenev V.F., Artyukhov V.G., Lavrinenko I.A. Saponiny. Voronezh, Izdatel'sko-poligraficheskii tsentr «Nauchnaya kniga», 2019, 205 р. (In Russ.)

Lenindzher A. Biokhimiya. Molekulyarnye osnovy struktury i funktsii kletki. M., Mir. 1976; 957 р. (In Russ.)

Kholyavka M.G., Kovaleva T.A., Grechkina M.V., Ostankova I.V., Artyukhov V.G. Osobennosti struktury inulinaz razlichnogo proiskhozhdeniya. Prikladnaya biokhimiya I mikrobiologiya. 2014; 1: 17-24. (In Russ.)

Tyukavkina N.A. Bioorganicheskaya khimiya. M., Drofa, 2004, 544 р. (In Russ.)

Ettalibi M. Molecular and kinetic properties of Aspergillus ficuuminulinases. Agric. Biol. Chem. 1990; 54: 61-68.

Thannhauser T.W., Konishi Y., Scheraga H.A. Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins. Analytical biochemistry. 1984; 138(1): 181-188.

Singh R.S., Chauhana K., Kennedy J.F. A panorama of bacterial inulinases: production, purification, characterization and industrial applications. International Journal of Biological Macromolecules. 2017; 96: 312-322.

Treichel H., Oliveira D., Lerin L., Astolfi V., Mazutti M.A., Di Luccio M., Oliveira J.V. A review on the production and partial characterization of microbial inulinases.Global Journal of Biochemistry. 2012; 3: 1-13.

Nagem R.A.P., Rojas A.L, Golubev A.M., Korneeva O.S., Eneyskaya E.V., Kulminskaya A.A., Neustroev K.N., Polikarpov I. Crystal structure of exoin-ulinase from Aspergillus awamori : the en-zyme fold and structural determinants of substrate recognition. J. Mol. Biol. 2004; 344 (11): 471-480.

Wen T., Liu F., Huo K., Li Y.-Y. Cloning and analysis of the inulinase gene from Kluyveromyces cicerisporus CBS4857.World Journal of Microbiology & Biotechnology. 2003; 19: 423-426.

Adawiyah S.R., Shuhaimi M., MohdYazid A.M., Abdul Manaf A., Rosli N., Sreeramanan S. Molecular cloning and sequence analysis of an inulinase gene from an Aspergillus sp. World J. Microbiol. Biotechnol. 2011; 27: 2173-2185.

Ji Y., Zhao X.Purification and prop-erties of inulinases from Aspergillus niger M89. Wei Sheng Wu XueBao. 1998; 38 (2): 120-125.

Shiomi N., Onodera S., Chatterton N.J., Harrison P.A. Separation of fructooli-gosaccharide isomers by anion-exchange chromatography. Agric Biol Chem. 1991; 55: 1427-1428.

Karrer P. Kurs organicheskoi khimii. Leningrad, Khimicheskaya literatura, 1962, 1216 р.

Kim K.Y. Role of the N-terminal domain of endoinulinase from Arthrobacter sp. S37 in regulation of enzyme catalysis. J. Biochem. 2005; 138: 27-33.

Ji Y. Zhao X. Purification and properties of inulinases from Aspergillus niger M89.Wei Sheng Wu XueBao. 1998; 38 (2): 120-125.

Pouyez J., Mayard A., Vandamme A.M., Roussel G., Perpète E.A., Wouters J., Housen I., Michaux C. First crystal struc-ture of an endo-inulinase, INU2, from As-pergillus ficuum: discovery of an extra-pocket in the catalytic domain responsible for its endoactivity. Biochimie. 2012; 94 (11): 2423-2430.

Gao J., Xu Y.Y., Yang H.M., Xu H., Xue F., Li S., Feng X.H. Gene cloning, ex-pression, and characterization of an exo-inulinase from Paenibacillus polymyxa ZJ-9. Applied Biochemistry and Biotechnology. 2014; 173: 1419-1430.

Zhang S., Yang F., Wang Q., Hua Y., Zhao Z.K. High-level secretory expression and characterization of the recombinant. Kluyveromy cesmarxianus inulinase. Process Biochemistry. 2012; 47: 151-155.

Wang L., Huang Y., Long X., Meng X., Liu Z. Cloning of exoinulinase gene from Penicillium janthinellum strain B01 and its high-level expression in Pichia pas-toris. J. Appl. Microbiol. 2011; 111: 1371-1380.

Kim K.Y., Rhee S., Kim S.I. Role of the N-terminal domain of endoinulinase from Arthrobacter sp. S37 in regulation of enzyme catalysis. J. Biochem. 2005; 138: 27-33.

Kushi R.T., Monti R., Con-tieroJ.Production, purification and charac-terization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J. Indust. Microbiol. Biotechnol. 2000; 25: 63-69.

Dikson M., Uebb E. Fermenty. Vol. 1. M., Mir, 1970, 252 р.

Determan G. Gel'-khromatografiya. M., Mir, 1970, 252 р.

Mustafaev R.M. Avtoref. diss. kand. tekhn. nauk. Voronezh, 1991, 24 р.

Keleti T. Osnovy fermentativnoi ki-netiki. M., Mir, 1990, 347 р.

Torchinskii Yu.M. Sera v belkakh. M., Nauka, 1977, 302 р.

Poltorak O.M., Chuhraj E.S. Fiziko-himicheskie osnovy fermentativnogo kataliza. M., Vysshaja shkola, 1971, 360 р.

Tsundel' G. Gidratatsiya i mezhmo-lekulyarnoe vzaimodeistvie. M., Mir, 1972, 404 р.

Dekhant I., Dants R. Infrakrasnaya spektroskopiya polimerov. M., Khimiya, 1976, 471 р.

Kazicina L.A., Kupletskaja N.B. Primenenie UF-, IK- i JMR-spektroskopii v organicheskoj himii. M., Vysshaja shkola, 1971, 264 р. (In Russ.)

Ugljanskaja V.A., Chikin G.A., Selemenev V.F., Zav'jalova T.A. Infrakrasnaja spektroskopija ionoobmennyh materialov. Voronezh, Izd-vo VSU, 1989, 208 р. (In Russ.)

Published
2023-12-27
How to Cite
Selemenev, V. F., Shkutina, I. V., Mironenko, N. V., Belanova, N. A., Sinyaeva, L. A., Belanova, A. A., & Kolomiets, L. N. (2023). Structural features of the active centre and quaternary structure of inulinase. Sorbtsionnye I Khromatograficheskie Protsessy, 23(5), 741-752. https://doi.org/10.17308/sorpchrom.2023.23/11692

Most read articles by the same author(s)