Сорбция флавоноидов и ароматических кислот на сверхсшитом полистироле в системах с добавками имидазолиевых ионных жидкостей

  • Варвара Михайловна Разницына Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия
  • Роман Владимирович Шафигулин Самарский национальный исследовательский университет имени академика С.П. Королева, Самара
  • Кирилл Юрьевич Виноградов Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия
  • Владимир Александрович Куркин СамГМУ Минздрава России, Самара, Россия
  • Анджела Владимировна Буланова Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия
Ключевые слова: имидазолиевые ионные жидкости, сверхсшитый полистирол, обращенно-фазовая высокоэффектив-ная жидкостная хроматография, флавоноиды, ароматические кислоты

Аннотация

В данной работе методом обращенно-фазовой ВЭЖХ (ОФ ВЭЖХ) оценено влияние добавок пяти имидазолиевых ионных жидкостей (ИЖ) к водно-ацетонитрильному элюенту на сорбцию ароматических кислот и флавоноидов на сверхсшитом полистироле (СПС). Было установлено, что на удерживание исследуемых соединений влияют как природа катиона, так и природа аниона используемой ИЖ. Изучено удерживание ароматических кислот и флавоноидов в системах без добавления и с добавлением в элюент трифторуксусной кислоты (ТФУ). Показано, что добавление ТФУ в водно-ацетонитрильный элюент изменяет механизм действия имидазолиевых ИЖ на удерживание сорбатов на СПС. В частности, порядок выхода феруловой, салициловой и кофейной кислот в системах с ИЖ на СПС меняется в зависимости от рН среды (в зависимости от добавления ТФУ). Для оценки влияния состава водно-ацетонитрильного элюента на удерживание исследуемых соединений использовали модели Снайдера-Сочевинского и Сочевинского-Вахтмейстера. Были рассчитаны угловые коэффициенты соответствующих моделей.

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Варвара Михайловна Разницына, Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

аспирант кафедры физической химии и хроматографии, Самарский университет, Россия

Роман Владимирович Шафигулин, Самарский национальный исследовательский университет имени академика С.П. Королева, Самара

к.х.н., заведующий кафедрой физической химии и хроматографии, Самарский университет, Самара, Россия

Кирилл Юрьевич Виноградов, Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

аспирант кафедры физической химии и хроматографии, Самарский университет, Россия

Владимир Александрович Куркин, СамГМУ Минздрава России, Самара, Россия

д.фарм.н., заведующий кафедрой фармакогнозии с ботаникой и основами фитотерапии, ФГБОУ ВО СамГМУ Минздрава России, Россия

Анджела Владимировна Буланова, Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

Dr.Sci (Chemistry), professor of the Department of Physical Chemistry and Chromatography, Samara University, Russia, e-mail: av.bul@yandex.ru

Литература

Perez-Vizcaino F., Duarte J. Flavonols and cardiovascular disease, Mol Asp Med. 2010; 31(6): 478-94. https://doi.org/10.1016/j.mam.2010.09.002

Karak P. Biological activities of flavonoids: An overview, Int. J. Pharm. Sci. Res. 2019; 10(4): 1567-1574. https://doi.org/10.13040/IJPSR.0975-8232.10(4).1567-74

Dias M.C., Pinto D.C., Silva A.M. Plant flavonoids: Chemical characteristics and biological activity, Molecules. 2021; 26(17): 5377. https://doi.org/10.3390/molecules26175377

Mizzi L., Chatzitzika C., Gatt R., Valdramidis V. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks, Food Technol. Biotechnol. 2020; 58(1): 12-19. https://doi.org/10.17113/ftb.58.01.20.6395

Bocian S., Buszewski B. Residual silanols at reversed‐phase silica in HPLC–a contribution for a better understanding, J. Sep. Sci. 2012; 35(10-11): 1191-1200. https://doi.org/10.1002/jssc.201200055

Petruczynik A. Effect of ionic liquid additives to mobile phase on separation and system efficiency for HPLC of selected alkaloids on different stationary phases, J. Chromatogr. Sci. 2012; 50(4): 287-293. https://doi.org/10.1093/chromsci/bms004

Hanai T. Fundamental properties of packing materials for liquid chromatography, Separations. 2019; 6(1): 2. https://doi.org/10.3390/separations6010002

Yashin Y.I., Yashin A.Y. Sorbents for HPLC. Current state and new directions of development (Overview), Sorbtsionnye i Khromatograficheskie Protsessy. 2021; 21(2): 235-245. https://doi.org/10.17308/sorpchrom.2021.21/3357

Davankov V., Tsyurupa M. Hypercrosslinked polystyrene as column packing material in HPLC, Compr. Anal. Chem. 2011; 56: 503-521. https://doi.org/10.1016/S0166-526X(11)56013-1

Saifutdinov B.R., Davankov V.A., Il’in M.M., Tsyurupa M.P., Blinnikova Z.K. Selective adsorption of organic compounds from solutions on hyper-cross-linked polystyrenes with ultimate degrees of cross linking, Protection of Metals and Physical Chemistry of Surfaces. 2015; 51: 957-963. https://doi.org/10.1134/S2070205115060209

Saifutdinov B.R., Buryak A.K. Thermodynamic Characteristics and Selectivity of the Liquid-Phase Adsorption of Aromatic Compounds on Hypercrosslinked Polystyrene Networks with Ultimate-High Crosslinking Densities by Data of Liquid Chromatography, International Journal of Molecular Sciences. 2024; 25(3): 1551. https://doi.org/10.3390/ijms25031551

Tsyurupa M.P., Davankov V.A. Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review, Reactive and Functional Polymers. 2006; 66(7): 768-779. https://doi.org/10.1016/j.reactfunctpolym.2005.11.004

Davankov V., Tsyurupa M., Ilyin M., Pavlova L. Hypercross-linked polystyrene and its potentials for liquid chromatography: a mini-review, J. Chromatogr. A. 2002; 965(1-2): 65-73. https://doi.org/10.1016/S0021-9673(01)01583-7

Deineka V.I., Oleinits E.Y., Blinova I.P., Deineka L.A. Selectivity of the Separation of Isomeric Chlorogenic Acids under the Conditions of Reversed-Phase HPLC, J. Anal. Chem. 2019; 74: 778-783. https://doi.org/10.1134/S1061934819080057

Kartsova L.A., Bessonova E.A., Kolobova E.A. Ionic liquids as modifiers of chromatographic and electrophoretic systems, J. Anal. Chem. 2016; 71: 141-152. https://doi.org/10.1134/S1061934816020064

Carda-Broch S., García-Alvarez-Coque M.C., Ruiz-Angel M.J. Extent of the influence of phosphate buffer and ionic liquids on the reduction of the silanol effect in a C18 stationary phase, J. Chromatogr. A. 2018; 1559: 112-117. https://doi.org/10.1016/j.chroma.2017.05.061

Lei Z., Chen B., Koo Y.M., MacFarlane D.R. Introduction: ionic liquids, Chem. Rev. 2017; 117(10): 6633-6635. https://doi.org/10.1021/acs.chemrev.7b00246

Studzińska S., Buszewski B. Study of retention mechanism of imidazolium‐based ionic liquids in HPLC, J. Sep. Sci. 2010; 33(9): 1264-1273. https://doi.org/10.1002/jssc.200900799

Zhang W., He L., Gu Y., Liu X., Jiang S. Effect of ionic liquids as mobile phase additives on retention of catecholamines in reversed-phase high-performance liquid chromatography, Anal. Lett. 2003; 36: 827-838. https://doi.org/10.1081/AL-120018802

Hu X., Peng J., Huang Y., Yin D., Liu J. Ionic liquids as mobile phase additives for high‐performance liquid chromatography separation of phenoxy acid herbicides and phenols, J. Sep. Sci. 2009; 32(23-24): 4126-4132. https://doi.org/10.1002/jssc.200900538

Guo Y., Yin Z.J., Sun Y. M., Yu H. Separation and indirect ultraviolet detection of common fluorine-containing anions by ionic liquids in reversed-phase chromatography, J. Liq. Chromatogr. Relat. Technologies, 2020; 43(15-16): 597-603. https://doi.org/10.1080/10826076.2020.1769649

Ma Y.J., Guan C., Dong Y.J., Yu H. High-performance liquid chromatography utilization of ionic liquids as mobile phase additives for separation and determination of the isomers of amino benzoic acids, Chin Chem Lett. 2016; 27(5): 749-752. https://doi.org/10.1016/j.cclet.2016.01.023

Wang J., Qiao J.Q., Zheng W.J., Lian H. Z. Effect of ionic liquids as mobile phase additives on retention behaviors of G-quadruplexes in reversed-phase high performance liquid chromatography, J. Chromatogr. A 2024; 1715: 464604. https://doi.org/10.1016/j.chroma.2023.464604

Gao W., Dong X., Wang R., Liu X.G., Li P., Yang H. The use of ionic liquid as a mobile phase modifier in analytical supercritical fluid chromatography for the separation of flavonoids, RSC Adv. 2016; 6(66): 61418-61422. https://doi.org/10.1039/C6RA10975F

Herrera-Herrera A.V., Hernández-Borges J., Rodríguez-Delgado M.Á. Ionic liquids as mobile phase additives for the high-performance liquid chromatographic analysis of fluoroquinolone antibiotics in water samples, Anal. Bioanal. Chem. 2008; 392: 1439-1446. https://doi.org/10.1007/s00216-008-2442-9

Komsta Ł.A new general equation for retention modeling from the organic modifier content of the mobile phase, Acta Chromatographica. 2010; 22(2): 267-279. https://doi.org/10.1556/achrom.22.2010.2.9

Shatc V.D., Sahartova O.V. Vysokoeffektivnaya zhidkostnaya hromatografiya: Osnovy teorii. Metodologiya primeneniya v lekarstvennoj himii [High Performance Liquid Chromatography: Fundamentals of Theory. Methodology of application in medicinal chemistry]. Riga: Zinatne, 1988, 390 p.

Soczewiński E., Wachtmeister C.A. The relation between the composition of certain ternary two-phase solvent systems and RM values, J. Chromatogr. A. 1962; 7: 311-320. https://doi.org/10.1016/S0021-9673(01)86422-0

Pitucha M., Matysiak J., Senczyna B. Synthesis and RP HPLC studies of biologically active semicarbazides and their cyclic analogues 1, 2, 4-triazol-3-ones, Monatsh. Chem. 2012; 143(4): 657-667. https://doi.org/10.1007/s00706-011-0715-z

Deineka V.I., Deineka L.A., Blinova I.P., Kostenko M.O., Oleinitz E.Yu. About chromatographic behavior of flavonoids in reversed-phase HPLC, Sorbtsionnye I Khromatograficheskie Protsessy. 2016; 16(3): 377-383.

Zhao H. Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology. 2006; 81(6): 877-891. https://doi.org/10.1002/jctb.1449

Опубликован
2024-12-08
Как цитировать
Разницына, В. М., Шафигулин, Р. В., Виноградов, К. Ю., Куркин, В. А., & Буланова, А. В. (2024). Сорбция флавоноидов и ароматических кислот на сверхсшитом полистироле в системах с добавками имидазолиевых ионных жидкостей. Сорбционные и хроматографические процессы, 24(5), 682-694. https://doi.org/10.17308/sorpchrom.2024.24/12508

Наиболее читаемые статьи этого автора (авторов)