Modelling optical polarization processes on laser modified titanium with a polyvinyl alcohol film
Abstract
The article presents the results of research of optical spectra of surface plasmon polaritons on laser modified titanium with a deposited micron polymer polyvinyl alcohol (PVA) film.
The metasurface of titanium was created by means of femtosecond laser treatment with l = 1.035 µ and the duration t = 280 fs with linear and circular radiation polarization. Sets of laser pulses were applied pointwise to the surface with a step of 100 μm with the interval ti = 25–750 ms. In the case of linear radiation polarization, tracks of ripple structures with a line density of up to N ~ 1,200 mm–1 appeared on the scribed titanium surface. It was found that when titanium is exposed to circular polarization radiation, occasional ablation cavities with lobed circular ripple nano-microstructures appear along the line of beam pulse propagation.
Mathematical modelling of real Re(e) and imaginary Im(e) permittivity established that the spectral parameters in the reflectance spectra of polarized radiation almost fully matched. The analysis of the spectra also established that the maximum absorption was in the IR region due to the presence of a PVA film.
Downloads
References
Y., Shen X. Femtosecond laser-induced large area of periodic structures on chalcogenide glass via twice laser direct-writing scanning process. Optics & Laser Technology. 2020;124: 105977. https://doi.org/10.1016/j.optlastec.2019.105977
Messaddeq S. H., Vallée R., Soucy P., Bernier M., El-Amraoui M., Messaddeq Y. Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation. Optics Express. 2012;20(28): 29882–29889. https://doi.org/10.1364/OE.20.029882
Lim H. U., Kang J., Guo C., Hwang T. Y. Femtosecond laser-induced dual periodic structures on Ni. Frontiers in Optics. 2017. Washington, D.C.: OSA; 2017. https://doi.org/10.1364/FIO.2017.JTu3A.41
Simões J. G. A. B., Riva R., Miyakawa W. Highspeed laser-induced periodic surface structures (LIPSS) generation on stainless steel surface using a nanosecond pulsed laser. Surface and Coatings Technology. 2018;344: 423–32. https://doi.org/10.1016/j.surfcoat.2018.03.052
Bonse J, Kirner S V., Krüger J. Laser-induced periodic surface structures (LIPSS). In: Handbook of laser micro- and nano-engineering. Springer Nature; 2020. pp. 1–59. https://doi.org/10.1007/978-3-319-69537-2_17-2
Lorenz P., Zagoranskiy I., Ehrhardt M., Zimmer K. P. Laser-induced large area sub-µm and nanostructuring of dielectric surfaces and thin metal layer. In: Proc. SPIE 10906, Laser-based Micro- and Nanoprocessing XIII, 109060T, 4 March 2019. https://doi.org/10.1117/12.2510206
Silvennoinen M., Hasoň S., Silvennoinen R. Optical resonance on LIPSS sensed by polarized light. In: Proc. SPIE 9066, Eleventh International Conference on Correlation Optics, 90660X, 17 December 2013. https://doi.org/10.1117/12.2047104
Rathmann L., Beste L. H., Radel T. Laser based process chain to use LIPSS on forming tools. Surface and Coatings Technology. 2021;426: 127761. https://doi.org/10.1016/j.surfcoat.2021.127761
Romano J. M., Garcia-Girón A., Penchev P., Dimov S. S. Durability and wear resistance of LIPSS. In: Proc. Volume 11674, Laser-based Micro- and Nanoprocessing XV; 116740N. 2021. p. 19. https://doi.org/10.1117/12.2584010
Karkantonis T., Gaddam A., See T. L., Joshi S. S., Dimov S. Femtosecond laser-induced sub-micron and multi-scale topographies for durable lubricant impregnated surfaces for food packaging applications. Surface and Coatings Technology 2020;399: 126166. https://doi.org/10.1016/j.surfcoat.2020.126166
Gazizova M. Y., Smirnov N. A., Kudryashov S. I., … Prokopenko N. A. Correlation of the tribological properties of LIPSS on TiN surface with 3D parameters of roughness. IOP Conference Series: Materials Science and Engineering. 2021;1014(1): 012014. https://doi.org/10.1088/1757-899X/1014/1/012014
Exir H., Weck A. Mechanism of superhydrophilic to superhydrophobic transition of femtosecond laser-induced periodic surface structures on titanium. Surface and Coatings Technology 2019;378: 124931. https://doi.org/10.1016/j.surf-coat.2019.124931
Orazi L., Pelaccia R., Mishchenko O., Reggiani B., Pogorielov M. Fast LIPSS based texturing process of dental implants with complex geometries.CIRP Annals. 2020;69(1): 233–236. https://doi. org/10.1016/j.cirp.2020.04.065
Orazi L., Pogorielov M., Deineka V., … Reggiani B. Osteoblast cell response to LIPSS-modified Ti-implants. Key Engineering Materials. 2019;813: 322–327. https://doi.org/10.4028/www.scientific.net/KEM.813.322
Khorkov K. S., Kochuev D. A., Dzus M. A., Prokoshev V. G. Wettability surface control on stainless steel by LIPSS formation. Journal of Physics: Conference Series. 2021; 1822(1): 012010. https://doi.org/10.1088/1742-6596/1822/1/012010
Zyubin A., Kon I., Tcibulnikova A., … Demin M. Numerical FDTD-based simulations and Raman experiments of femtosecond LIPSS. Optics Express. 2021;29(3): 4547–4558. https://doi.org/10.1364/oe.413460
Vorobyev A. Y., Guo C. Femtosecond laser nanostructuring of metals. Optics Express. 2006;14(6): 2164. https://doi.org/10.1364/OE.14.002164
Zhang W., Cue N., Yoo K. M. Emission linewidth of laser action in random gain media. Optics Letters. 1995;20(9): 961. https://doi.org/10.1364/OL.20.000961
Drachev V. P., Chettiar U. K., Kildishev A. V., Yuan H.-K., Cai W., Shalaev V. M. The Ag dielectric function in plasmonic metamaterials. Optics Express. 2008;16; 1186–1195. https://doi.org/10.1364/OE.16.001186
De Sio L., Placido T., Comparelli R., … Bunninge T. J. Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics. Progress in Quantum Electronics. 2015;41: 23–70. https://doi.org/10.1016/j.pquantelec.2015.03.001
Chauhan M., Kumar Singh V. Review on recent experimental SPR/LSPR based fiber optic analyte sensors. Optical Fiber Technology. 2021; 64. https://doi.org/10.1016/j.yofte.2021.102580
Misra S., Zhang D., Qi Z., … Wang H. Morphology control of self-assembled three-phase Au-BaTiO3- ZnO hybrid metamaterial for tunable optical properties. Crystal Growth and Design. 2020;20(9): 6101–8. https://doi.org/10.1021/acs.cgd.0c00801
Jia X., Wang X. Optical fishnet metamaterial with negative, zero, positive refractive index and nearly perfect absorption behavior at different frequencies. Optik. 2019;182: 464–468. https://doi.org/10.1016/j.ijleo.2019.01.066
Kim J., Han K., Hahn J. W. Selective dual-band metamaterial perfect absrber for infrared stealth technology. Scientific Reports. 2017;7(1): 6740. https://doi.org/10.1038/s41598-017-06749-0
Pralle M. U., Moelders N., McNeal M. P., Puscasu I., Greenwald A. C., Daly J. T., Johnson E. A. Photonic crystal enhanced narrow-band infrared emitters. Applied Physics Letters. 2002;81(25): 4685–4687. https://doi.org/10.1063/1.1526919
Sikdar D., Pendry J. B., Kornyshev A. A. Nanoparticle meta-grid for enhanced light extraction from light- mitting devices. Light: Science and Applications. 2020;9(1): 1–11. http://dx.doi.org/10.1038/s41377-020-00357-w
Naik G. V., Kim J., Boltasseva A. Oxides andnitrides as alternative plasmonic materials in the optical range. Optical Materials Express. 2011;1(6): 1090. https://doi.org/10.1364/OME.1.001090
Sakurai A., Bo Z., Zhang Z. Prediction of the resonance condition of metamaterial emitters and absorbers using LC circuit model. In: International Heat Transfer Conference 15, August, 10-15, 2014, Kyoto, Japan. 2014. pp. 7067–7076. https://doi.org/10.1615/IHTC15.rad.009012
Wei D., Hu C., Chen M., … Xie C. Optical modulator based on the coupling effect of different surface plasmon modes excited on the metasurface. Optical Materials Expres.s 2020;10(1): 105–118. https://doi.org/10.1364/ome.382116
Tao H., Bingham C. M., Strikwerda A. C., … Averitt R. D. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Physical Review B – Condensed Matter and Materials Physics. 2008;78: 241103. https://doi.org/10.1103/PhysRevB.78.241103
Alves F., Kearney B., Grbovic D., Karunasiri G. Narrowband terahertz emitters using metamaterial films. Optics Express. 2012;20(19): 21025–21032. https://doi.org/10.1364/OE.20.021025
Lazzini G., Romoli L., Tantussi F., Fuso F. Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization. Optics and Laser Technology. 2018;107: 435–442. https://doi.org/10.1016/j.optlastec.2018.06.023
Khorasaninejad M., Chen W. T., Devlin R. C., Oh J., Zhu A. Y., Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subw aveleng thre solutionimaging. Science . 2016;352(6290): 1190–1194. https://doi.org/10.1126/science.aaf6644
Öktem B., Pavlov I., Ilday S., Kalaycıoğlu H., Rybak A., Yavaş S., Erdoğan M., Ömer F. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics. 2013;7(11): 897–901. https://doi.org/10.1038/nphoton.2013.272
Dostovalov A. V., Korolkov V. P., Babin S. A. Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties. Applied Physics B: Lasers and Optics. 2017;123: 30. https://doi.org/10.1007/s00340-016-6600-z
Emmony D. C., Howson R. P., Willis L. J. Laser mirror damage in germanium at 10.6 μm. AppliedPhysics Letters. 1973;23(11): 598–600. https://doi.org/10.1063/1.1654761
Sipe J. E., Young J. F., Preston J. S., van Driel H. M. Laser-induced periodic surface structure. I. Theory. Physical Review B. 1983;27(2): 1141–1154. https://doi.org/10.1103/PhysRevB.27.1141
Maier S. A. Plasmonics: fundamentals and applications. New York: Springer; 2007. https://doi.org/10.1007/0-387-37825-1
/ Klimov V. V. Nanoplasmonics*. Moscow: Physmathlit Publ.; 2009. 115 p. (In Russ.)
Inouye H., Tanaka K., Tanahashi I., Hirao K. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Physical Review B. 1998;57:11334–11340. https://doi.org/10.1103/Phys-RevB.57.11334
Grua P., Morreeuw P., Bercegol H., Jonusauskas G., Vallée F. Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses. Physical Review B – Condensed Matter and Materials Physics. 2003;68(12): 035424. https://doi.org/10.1103/PhysRevB.68.035424
Agranovich V. M., Mills D. L. Modern problems in condensed matter sciences. Amsterdam: North-Holland Publishing Company; 1982. pp. 3–717. https://doi.org/10.1016/B978-0-444-86165-8.50001-3
Brodskii A. M., M. I. Urbakh. Optics of rough surfaces of metals. Sov. Phys. JETP. 1985;62(2): 391–399. Available at: http://jetp.ras.ru/cgi-bin/dn/e_062_02_0391.pdf
Anisimov S. I., Luk’yanchuk B. S. Selected problems of laser ablation theory. Physics-Uspekhi 2002;45(3): 293–324. https://doi.org/10.1070/PU2002v045n03ABEH000966
Gerasimenko Yu. V., Logacheva V. A., Khoviv A. M. Synthesis and properties of titanium dioxide thin films. Condensed Matter and Interphases. 2010;12(2): 113–118. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=15176043
Hou Y. Q., Zhuang D. M., Zhang G., Zhao M., Wu M. S. Influence of annealing temperature on the properties of titanium oxide thin film. Applied Surface Science. 2003;218(1–4): 98–106. https://doi.org/10.1016/S0169-4332(03)00569-5
Makarov E. S., Kuznetsov M. L. The crystal structure and chemical character of lower oxides of titanium ТiO0–0.48. Journal of Structural Chemistry. 1960;1: 156–162. https://doi.org/10.1007/BF00738933
Chibisov A. N., Bizyuk A. O. Electronic structure of titanium dioxide nanoparticles*. Vestnik Amurskogo gosudarstvennogo universiteta. 2008;(43): 22–23. (In Russ.). Available at: https://www.elibrary.ru/item.
asp?id=19007690
Surface enhanced raman scattering. R. Chang, T. Furtak (eds.). New York and London: Springer; 1982. https://doi.org/10.1007/978-1-4615-9257-0
Gräf S., Müller F. A. Polarisation-dependent generation of fs-laser induced periodic surface structures. Applied Surface Science. 2015;331: 150–155. https://doi.org/10.1016/j.apsusc.2015.01.056
Kang M., Chen J., Wang X. L., Wang H. T. Twisted vector field from an inhomogeneous and anisotropic metamaterial. Journal of the Optical Society of America B. 2012;29(4). 572–576. https://doi.org/10.1364/JOSAB.29.000572
Bäuerle D. Laser processing and chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg; 1996. 279 p. https://doi.org/10.1007/978-3-662-03253-4
Ford G. W., Weber W. H. Electromagnetic interactions of molecules with metal surfaces. Physics Reports. 1984;113(4): 195–287. https://doi.org/10.1016/0370-1573(84)90098-X
Rosenberg H. M. The solid state : an introduction to the physics of solids for students of physics, materials science, and engineering. Oxford University Press; 1992. 315 p.
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.