Phase equilibria in the Cu2SnSe3–Sb2Se3–Se system

  • Elnara N. Ismailova Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev of the Azerbaijan National Academy of Sciences, 113 H. Javid av., Baku Az1143, Azerbaijan https://orcid.org/0000-0002-1327-1753
  • Leyla F. Mashadiyeva Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev of the Azerbaijan National Academy of Sciences, 113 H. Javid av., Baku Az1143, Azerbaijan https://orcid.org/0000-0003-2357-6195
  • Ikhtiyar B. Bakhtiyarly Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev of the Azerbaijan National Academy of Sciences, 113 H. Javid av., Baku Az1143, Azerbaijan https://orcid.org/0000-0002-7765-0672
  • Mahammad B. Babanly Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev of the Azerbaijan National Academy of Sciences, 113 H. Javid av., Baku Az1143, Azerbaijan https://orcid.org/0000-0001-5962-3710
Keywords: Phase diagram, Liquidus surface, Copper-antimony-tin selenides

Abstract

    Complex copper-tin and copper-antimony chalcogenides are of great interest for the development of new environmentally friendly and inexpensive thermoelectric materials. Recently, these compounds have been drawing more interest due to the possibility of increasing their thermoelectric performance with various cationic and anionic substitutions. In this article, we continued the study of multi-component systems based on the copper chalcogenides and presented the results of the study of phase equilibria in the Cu2SnSe3–Sb2Se3–Se system. The study was conducted using differential thermal analysis and powder X-ray diffraction.
       Based on the experimental data, a projection of the liquidus surface and three polythermal cross sections of the phase diagram were plotted. We determined the regions of primary crystallisation of the phases and the nature and temperatures of non-variant and monovariant equilibria.
        It was established that the liquidus surface consisted of two primary crystallisation regions based on Cu2SnSe3 and Sb2Se3 phases. The primary crystallisation region of elementary selenium was degenerate. A large immiscibility region of two liquid phases was found in the system.

Downloads

Author Biographies

Elnara N. Ismailova, Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev of the Azerbaijan National Academy of Sciences, 113 H. Javid av., Baku Az1143, Azerbaijan

PhD student, Researcher,
Institute of Catalysis and Inorganic Chemistry of the
National Academy of Sciences of Azerbaijan (Baku,
Azerbaijan).

Leyla F. Mashadiyeva, Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev of the Azerbaijan National Academy of Sciences, 113 H. Javid av., Baku Az1143, Azerbaijan

PhD in Chemistry, Senior
Researcher, Institute of Catalysis and Inorganic
Chemistry of the National Academy of Sciences of
Azerbaijan (Baku, Azerbaijan).

Ikhtiyar B. Bakhtiyarly, Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev of the Azerbaijan National Academy of Sciences, 113 H. Javid av., Baku Az1143, Azerbaijan

Dr. Sci. (Chem.), Professor,
Head of laboratory, Institute of Catalysis and Inorganic
Chemistry of the National Academy of Sciences of
Azerbaijan (Baku, Azerbaijan).

Mahammad B. Babanly, Institute of Catalysis and Inorganic Chemistry n.a. M. Nagiyev of the Azerbaijan National Academy of Sciences, 113 H. Javid av., Baku Az1143, Azerbaijan

Dr. Sci. (Chem.), Professor,
Associate Member of the Azerbaijan National Academy
of Sciences, Executive Director of the Institute of
Catalysis and Inorganic Chemistry, Azerbaijan
National Academy of Sciences (Baku, Azerbaijan).

References

Alonso-Vante N. Chalcogenide materials for energy conversion. Pathways to oxygen and hydrogen reactions. Springer Cham; 2018. 226 p. https://doi.org/10.1007/978-3-319-89612-0

Applications of Chalcogenides: S, Se, and Te. Ahluwalia G. K. (ed.). Cham. Springer, 2016. 461 p. https://doi.org/10.1007/978-3-319-41190-3

Chalcogenides: Advances in research and applications. Nova P. W. (ed.). 2018. 111 p.

Peccerillo E., Durose K. Copper–antimony and copper–bis muthchal cogenides—Research opportunities and review for solar photovoltaics. MRS Energy & Sustainability. 2018;5(1): 1–59. https://doi.org/10.1557/mre.2018.10

Sanghoon X. L., Tengfei L. J., Zhang L. Y-H. Chalcogenide. From 3D to 2D and beyond. Elsevier; 2019. 398 p.

Suekun K., Takabatake T. Research update: Cu–S based synthetic minerals as efficient thermoelectric materials at medium temperatures. APL Materials. 2016;4: 104503. https://doi.org/10.1063/1.4955398

Chetty R., Bali A., Mallik R. C. Tetrahedrites as thermoelectric materials: an overview. Journal of Materials Chemistry C. 2015;3(48): 12364–12378. https://doi.org/10.1039/c5tc02537k

Kim F. S., Suekuni K., Nishiate H., Ohta M., Tanaka H. I., Takabatake T. Tuning the charge carrier density in the thermoelectric colusite. Journal of Applied Physics. 2016;119(17): 175105. https://doi.org/10.1063/1.4948475

Powell A. V. Recent developments in Earthabundant copper-sulfide thermoelectric materials. Journal of Applied Physics, 2019;126(10): 100901. https://doi.org/10.1063/1.5119345

Mikuła A., Mars K., Nieroda P., Rutkowski P. Copper chalcogenide-copper tetrahedrite composites – a new concept for stable thermoelectric materials dased on the chalcogenide system. Materials. 2021;14(10): 2635. https://doi.org/10.3390/ma14102635

Sobolev A. V., Presniakov I. A., Nasonova D. I., Verchenko V. Yu., Shevelkov, A. V. Thermally-activated electron exchange in Cu12-xFexSb4S13 (x = 1.3, 1.5) tetrahedrites: a Mössbauer study. The Journal of Physical Chemistry C. 2017;121(8): 4548–4557. https://doi.org/10.1021/acs.jpcc.6b12779

Sun F.-H., Dong J., Dey S., … Li J.-F. Enhanced thermoelectric performance of Cu12Sb4S13−d tetrahedrite via nickel doping. Science China Materials. 2018;61(9): 1209–1217. https://doi.org/10.1007/s40843-018-9241-x

Deng S., Jiang X., … Tang X. The reduction of thermal conductivity in Cd and Sn co-doped Cu3SbSe4- based composites with a secondary-phase CdSe. Journal of Materials Science, 2020;56(7): 4727–4740. https://doi.org/10.1007/s10853-020-05586-3

Zhao D., Wu D., Bo L. Enhanced thermoelectric properties of Cu3SbSe4 compounds via gallium doping. Energies. 2017;10(10): 1524. https://doi.org/10.3390/en10101524

Liu G., Li J., Chen K., … Li, L. Direct fabrication of highly-dense Cu2ZnSnSe4 bulk materials by combustion synthesis for enhanced thermoelectric properties. Materials & Design. 2016;93: 238–246. https://doi.org/10.1016/j.matdes.2015.12.172

Liu M., Qin X., Liu C. Substitution site selection and thermoelectric performance-enhancing mechanism of Cu12Sb4S13 doped with Pb/Ge/Sn. Physica Status Solidi B. 2022;259: 2100275–2100278. https://doi.org/10.1002/pssb.202100275

Chen K., Di Paola C., Laricchia S., … Bonini N. Structural and electronic evolution in the Cu3SbS4– Cu3SnS4 solid solution. Journal of Materials Chemistry C. 2020;8(33): 11508–11516. https://doi.org/10.1039/d0tc01804j

Nasonova D. I., Sobolev A. V., Presniakov I. A., Andreeva K. D., Shevelkov A. V. Position and oxidation state of tin in Sn-bearing tetrahedrites Cu12-xSnxSb4S13. Journal of Alloys and Compounds, 2019;778: 774–778. https://doi.org/10.1016/j.jallcom.2018.11.168

Wei T.-R., Wang H., Gibbs Z. M., … Li J.-F. Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap. Journal of Materials Chemistri A. 2014;2(33): 13527–13533. https://doi.org/10.1039/c4ta01957a

Tippireddy S., Prem Kumar D. S., Karati A., … Mallik R. C. Effect of Sn substitution on the thermoelectric properties of synthetic tetrahedrite. ACS Applied Materials and Interfaces. 2019;116(24): 21686–21696. https://doi.org/10.1021/acsami.9b02956

Chen K., Di Paola C., Du B., … Reece, M. Enhanced thermoelectric performance of Sn-doped Cu3SbS4. Journal of Materials Chemistry C. 2018;6(31): 8546–8552. https://doi.org/10.1039/c8tc02481b

Pi J.-H., Lee G.-E., Kim I.-H. Effects of Sndoping on the thermoelectric properties of famatinite. Journal of Electronic Materials. 2019;49(5): 2755 – 2761. https://doi.org/10.1007/s11664-019-07710-9

Babanly M. B., Chulkov E. V., Aliev Z. S., Shevel’kov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russian Journal of Inorganic Chemistry. 2017;62(13): 1703–1729. https://doi.org/10.1134/s0036023617130034

Imamaliyeva S. Z., Babanly D. M., Tagiev D. B., Babanly M. B. Physicochemical aspects of development of multicomponent chalcogenide phases having the Tl5Te3 structure: A Review. Russian Journal of Inorganic Chemistry. 2018;13: 1703–1027. https://doi.org/10.1134/s0036023618130041

Alverdiyev I. J., Aliev Z. S., Bagheri S. M., Mashadiyeva L. F., Yusibov Y. A., Babanly M. B. Study of the 2Cu2S+GeSe2 ↔ Cu2Se+GeS2 reciprocal system and thermodynamic properties of the Cu8GeS6-хSex solid solutions. Journal of Alloys and Compounds. 2017;691: 255–262. doi: https://doi.org/10.1016/j.jallcom.2016.08.251

Mashadiyeva L. F., Kevser J. O., Aliev I. I., Yusibov Y. A., Taghiyev D. B., Aliev Z. S., Babanlı M. B. The Ag2Te-SnTe-Bi2Te3 system and thermodynamic properties of the (2SnTe)1–X(AgBiTe2)X solid solutions series. Journal of Alloys and Compounds. 2017;724: 641–648. https://doi.org/10.1016/j.jallcom.2017.06.338

Mashadiyeva L. F., Kevser J. O., Aliev I. I., Yusibov Y. A., Taghiyev D. B., Aliev Z. S., Babanlı M. B. Phase equilibria in the Ag2Te-SnTe-Sb2Te3 system and thermodynamic properties of the (2SnTe)12x(AgSbTe2)x solid solution. Phase Equilibria and Diffusion. 2017;38(5): 603–614. https://doi.org/10.1007/s11669-017-0583-2

Bagheri S. M., Alverdiyev I. J., Aliev Z. S., Yusibov Y. A., Babanly M. B. Phase relationships in the 1.5GeS2+Cu2GeSe3 ↔ 1.5GeSe2+Cu2GeS3 reciprocal system. Journal of Alloys and Compounds. 2015;625: 131–137. https://doi.org/10.1016/j.jallcom.2014.11.118

Ismayilova E. N., Baladzhayeva A. N., Mashadiyeva L. F. Phase equilibria along the Cu3SbSe4- GeSe2 section of The Cu-Ge-Sb-Se. New Materials, Compounds and Applications. 2021;5(1): 52–58. Режим доступа: http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V5N1/Ismayilova_et_al.pdf

Ismayilova E. N. X-ray study of phase equilibria of the Cu3SbSe4-SnSe2. News of Azerbaijan Higher Technical Educational Institutions. 2021;23(5): 21–25. Режим доступа: https://zenodo.org/record/7621101

Ostapyuk T. A., Yermiychuk I. M., Zmiy O. F., Olekseyuk I. D. Phase equilibria in the quasiternary system Cu2Se–SnSe2–Sb2Se3. Chemistry of Metals and Alloys. 2009;2: 164–169. https://doi.org/10.30970/cma2.0100

Ismayilova E. N., Mashadieva L. F. Фазовые равновесия в системе Cu2Se-SnSe-Sb2Se3 по разрезу SnSe-Cu3SbSe3. Конденсированные среды и межфазные границы. 2018;20(2): 218–221. https://doi.org/10.17308/kcmf.2018.20/553

Ismailova E. N., Mashadieva L. F., Bakhtiyarly I. B., Babanly M. B. Phase equilibria in the Cu2Se–SnSe–CuSbSe2 system. Russian Journal of Inorganic Chemistry. 2019;64(6): 801–809. https://doi.org/10.1134/S0036023619060093

Ismailova E. N, Bakhtiyarly I. B, Babanly M. B. Refinement of the phase diagram of the SnSe-Sb2Se3 system. Chemical Problems. 2020;18(2): 250-256. https://doi.org/10.32737/2221-8688-2020-2-250-256

Ismayilova E. N. , Mashadiyeva L. F. , Bakhtiyarly I. B., Babanly M. B. Phase equilibria in the Cu2Se-SnSe-Sb2Se3 system. Azerbaijan Chemical Journal. 2022;1: 73–82. https://doi.org/10.32737/0005-2531-2022-1-73-82

Binary alloy phase diagrams - second edition. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak (eds.). Ohio, USA: ASM International, Materials Park; 1990. 3589 p.

Voutsas G. P., Papazoglou A. G., Rentzeperis P. J., Siapkas D. The crystal structure of antimony selenide, Sb2Se3. Zeitschrift für Kristallographie - Crystalline Materials. 1985;171: 261–268. https://doi.org/10.1524/zkri.1985.171.14.261

Parasyuk O. V., Olekseyuk I. D., Marchuk O. V. The Cu2Se–HgSe–SnSe2 system. Journal of Alloys and Compounds. 1999; 287(1-2): 197–205. https://doi.org/10.1016/S0925-8388(99)00047-X

Babanly M. B., Yusibov Yu. A., Abishov V. T. Three-component chalcogenides based on copper and silver*. Baku: BSU Publ.; 1993. 342 p. (In Russ.).

Sharma B.B., Ayyar R., Singh H. Stability of the Tetrahedral Phase in the AI 2BIVCVI 3 Group of Compounds.

Physica Status Solidi A. 1977;A40(2): 691–697. https://doi.org/10.1002/pssa.2210400237

Marcano G., Chalbaud L., Rincón C., Sánchez P. G. Crystal growth and structure of the semiconductor Cu2SnSe3. Materials Letters. 2002;53(3): 151–154. https://doi.org/10.1016/s0167-577x(01)00466-9

Delgado G. E., Mora A. J., Marcano G., Rincon C. Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data. Materials Research Bulletin. 2003;38: 1949–1955. https://doi.org/10.1016/j.materresbull.2003.09.017

Emsley J. The Elements. Oxford University Press; 1998. 300 p.

Published
2023-03-09
How to Cite
Ismailova, E. N., Mashadiyeva, L. F., Bakhtiyarly, I. B., & Babanly, M. B. (2023). Phase equilibria in the Cu2SnSe3–Sb2Se3–Se system. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(1), 47-54. https://doi.org/10.17308/kcmf.2023.25/10973
Section
Original articles

Most read articles by the same author(s)