Phase equilibria in the MnTе–MnGa2Te4–MnIn2Te4 system
Abstract
A family of compounds with the general formula АВ2Х4 (А – Mn, Fe, Co, Ni; B – Ga, In, Sb, Bi; X – S, Se, Te) and complex phases of variable compositions based on them are among promising functional materials with thermoelectric, photoelectric, optical, and magnetic properties. In this article, we continued the study of multi-component systems basd on the chalcogenides of transition metals and presented the results of the study of phase equilibria in the MnTе–MnGa2Te4–MnIn2Te4 system using differential thermal analysis and X-ray phase analysis.
Based on the experimental results, we built the polythermal cross sections MnTe–MnGaInTe4 and MnGa2Te4–[A] (where [A] is a biphasic alloy of the 2MnTe–MnIn2Te4 side system of the 50.0 mol% MnIn2Te4 composition) as well as an isothermal section of a phase diagram at 800 K and a projection of the liquidus surface. It was established that the liquidus consists of the fields of primary crystallisation of 4 phases: 1 – Mn-ht; 2 – phases based on various modifications of MnTe; 3 – g 1; 4 – g2. We also identified types and coordinates of non-variant and monovariant equilibria.
Based on triple compounds (MnGa2Te4, MnIn2Te4), we determined wide regions of solid solutions that are of particular interest as magnetic materials.
Downloads
References
Hyunjung K., Anand P. T., Eunhee H., Yunhee C., Heemin H., Sora B., Yeseul H., Hyoyoung L. FeIn2S4 nanocrystals: a ternary metal chalcogenide material for ambipolar field-fffect nransistors. Advance Science. 2018;1800068 (1-8). https://doi.org/10.1002/advs.201800068
Gao M. R., Xu Y. F., Jiang J., Yu S. H. Nanostuctured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews. 2013;42(7): 2986–3017. https://doi.org/10.1039/C2CS35310E
Xia C., Li J. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques. Journal of Semiconductors. 2016;37(5): 051001(1-9). https://doi.org/10.1088/1674-4926/37/5/053001
Karthikeyan N., Aravindsamy G., Balamurugan P., Sivakumar K. Thermoelectric properties of layered type FeIn2Se4 chalcogenide compound. Materials Research Innovations. 2018;22(5): 278–281. https://doi.org/10.1080/14328917.2017.1314882
Niftiyev N. N., Mamedov F. M., Quseynov V. I., Kurbanov S. Sh. AC electrical conductivity of FeIn2Se4 single crystals. Semiconductors. 2018;52(6): 683–685. https://doi.org/10.1134/S1063782618060167
Hwang Y., Choi J., Ha Y., Cho S., Park H. Electronic and optical properties of layered chalcogenide FeIn2Se4. Current Applied Physics. 2020; 20(1): 212–218. https://doi.org/10.1016/j.cap.2019.11.005
Yang J., Zhou Z., Fang J., Wen H., Lou Z., Shen G., Wei Z. Magnetic and transport properties of a ferromagnetic layered semiconductor MnIn2Se4. Applied Physics Letters. 2019;115(22): 222101(1-4). https://doi.org/10.1063/1.5126233
Sagredo V., Torres T. E., Delgado G. E., Rincón C. Effect of the paramagnetic to spin-glass phase transition on the fundamental absorption edge of MnIn2Se4 magnetic semiconducting compound. Revista Mexicana de Física. 2019;65(1): 14–19. https://doi.org/10.31349/RevMexFis.65.14
Djieutedjeu H., Lopez J. S., Lu R., Buchanan B., Zhou X. , Chi H., Ranmohotti K. G. S , Uher C., Poudeu P. F .P. Charge disproportionation triggers bipolar doping in FeSb2–xSnxSe4 ferromagnetic semiconductors, enabling a temperature-induced Lifshitz transition. Journal of the American Chemical Society. 2019;141(23): 9249–9261. https://doi.org/10.1021/jacs.9b01884
Djieutedjeu H., Zhou X., Chi H., Haldolaarachchige N., Ranmohott K. G. S., Uher C., Young D., Poudeu P. F. P. Donor and acceptor impuritydriven switching of magnetic ordering in MnSb2xSnxSe4. Journal of Materials Chemistry C. 2014;2(30): 6199–6210. https://doi.org/10.1039/C4TC00672K
Moroz N. A., Lopez J. S., Djieutedjeu H., Ranmohotti K. G. S., Olvera A. R., Pan P. A., Takas N. J., Uher C., Poudeu P. F. P. Indium preferential distribution enables electronic engineering of magnetism in FeSb2–xInxSe4 p-type high-Tc ferromagnetic semiconductors. Chemical of Materials. 2016;28(23): 8570–8579. https://doi.org/10.1021/acs.chemmater.6b03293
Haeuseler H., Srivastava S. K. Phase equilibria and layered phases in the systems A2X3-M2X3-M’X (A = Ga, In; M = trivalent metal; M’ = divalent metal; X = S, Se). Zeitschrift für Kristallographie. 2000;215(4): 205–221. https://doi.org/10.1524/zkri.2000.215.4.205
Otrokov M. M., Klimovskikh I. I., Bentmann H., Zeugner A., Aliev Z.S., Gass S., Wolter A. U. B, Koroleva A. V., Estyunin D., Shikin A. M., BlancoRey M., Hoffmann M., Vyazovskaya A. Yu, Eremeev S. V., Koroteev Y. M., Amiraslanov I. R., Babanly M. B., Mamedov N. T., Abdullayev N. A., Zverev V. N., Büchner B., Schwier E. F., Kumar S., Kimura A., Petaccia L., Di Santo G., Vidal R. C., Schatz S., Kisner K., Min C. H., Moser S. K., Peixoto T. R. F., Reinert
F., Ernst A., Echenique P. M., Isaeva A., Chulkov E. V. Prediction and observation of the first antiferromagnetic topological insulator. Nature. 2019;576(7787): 416–422. https://doi.org/10.1038/s41586-019-1840-9
Zhang D., Shi M., Zhu T., Xing D., Zhang H., Wang J. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Physical Review Letters. 2019;122(20): 206401(1-6). https://doi.org/10.1103/PhysRevLett.122.206401
Klimovskikh I. I., Otrokov M. M., Estyunin D., Eremeev S. V., Filnov S. O., Koroleva A., Shevchenko E., Voroshnin V., Rusinov I. P., Blanco-Rey M., Hofmann M., Aliev Z. S., Babanly M. B, Amiraslanov I. R., Abdullayev N. A. , Zverev V. N. , Kimura A. , Tereshchenko O. E., Kokh K. A., Petaccia L., Di Santo G., Ernst A., Echenique P. M., Mamedov N. T., Shikin A. M., Chulkov E. V. Tunable 3D/2D magnetism in the (MnBi2Te4) (Bi2Te3)m topological insulators family.
npj Quantum Materials. 2020; 5(54): 1–9. https://doi.org/10.1038/s41535-020-00255-9
Estyunin D. A. , Klimovskikh I. I. , Shikin A. M., Schwier E. F., Otrokov M. M., Kumira A., Kumar S., Filnov S. O., Aliev Z. S., Babanly M. B., Chulkov E. V. Signatures of temperature driven antiferromagnetic transition in the electronic structure of topological insulator MnBi2Te4. APL Materials. 2020;8(2):021105(1-7). https://doi.org/10.1063/1.5142846
He K. MnBi2Te4-family intrinsic magnetic topological materials. npj Quantum Mateials. 2020;5(1): 90(1-4). https://doi.org/10.1038/s41535-020-00291-5
Jahangirli Z. A., Alizade E. H., Aliev Z. S., Otrokov M. M. Ismayilova N. A., Mammadov S. N., Amiraslanov I. R., Mamedov N. T., Orudjev G. S., Babanly M. B., Shikin A. M., Chulkov E. V. Electronic structure and dielectric function of Mn-Bi-Te layered compounds. Journal of Vacuum Science & Technology B. 2019; 37(6): 062910(1-6). https://doi.org//10.1116/1.5122702
Yuan Y., Wang X., Li H., Li J., Ji Y., Hao Z., Wu Y., He K., Wang Y., Xu Y., Duan W., Li W., Xue Q. Electronic states and magnetic response of MnBi2Te4 by scanning tunneling microscopy and spectroscopy. Nano Letters. 2020;20(5): 3271−3277. https:/doi.org/10.1021/acs.nanolett.0c00031
Zhou L., Tan Z., Yan D., Fang Z., Shi Y., Weng H. Topological phase transition in the layered magnetic compound MnSb2Te4: Spin-orbit coupling and interlayer coupling dependence. Physical Review B. 2020;102: 085114(1-8). https://doi.org/10.1103/PhysRevB.102.085114
Garrity K. F., Chowdhury S., Tavazza F. M. Topological surface states of MnBi2Te4 at finite temperatures and at domain walls. Physical Review Materials. 2021;5: 024207(1-6). https://doi.org/10.1103/PhysRevMaterials.5.024207
Ovchinnikov D., Huang X., Lin Z. ... Xu X. Intertwined topological and magnetic orders in atomically thin chern insulator MnBi2Te4. Nano Letters. 2021;21(6): 2544−2550. https://dx.doi.org/10.1021/acs.nanolett.0c05117
Swatek P., Wu Y., Wang L. L. Gapless dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Physical Review B. 2020;101(16): 161109(1-6). https://doi.org/10.1103/PhysRevB.101.161109
Zhu T., Bishop A. J., Zhou T., Zhu M., O’Hara D. J., Baker A. A., Cheng S., Walko R. C., Repicky J. J., Liu T., Gupta J. A., Jozwiak C. M., Rotenberg E., Hwang J., Žutic I., Kawakami R. K. Synthesis, magnetic properties, and electronic structure of magnetic topological insulator MnBi2Se4. Nano Letters. 2021;21(12): 5083– 5090, https://doi.org/10.1021/acs.nanolett.1c00141
Babanly M. B., Mashadiyeva L. F., Babanly D. M., Imamaliyeva S. Z., Tagiev D. B., Yusibov Yu. A Some issues of complex studies of phase equilibria and thermodynamic properties in ternary chalcogenide systems involving Emf Measurements (Review). Russian Journal of Inorganic Chemistry. 2019;64(13): 1649–1671. https://doi.org/10.1134/S0036023619130035
Kertman A. V., Ruseikina A. V. Phase equilibria in BaS–In2S3 system. Russian Journal of Inorganic Chemistry.2020;65(11): 1756–1761. https://doi.org/10.1134/S003602362011008X
Zlomanov V. P., Khoviv A. M., Zavrazhnov A. Yu. Physicochemical analysis and synthesis of nonstoichiometric solids. Materials Science - Advanced Topics. 2013, Chapter 5, pp. 103–128. https://doi.org/10.5772/54815
Mammadov F. M., Amiraslanov I. R., Imamaliyeva S. Z., Babanly M. B. Phase relations in the FeSe– FeGa2Se4–FeIn2Se4 system: refinement of the crystal structures of FeIn2Se4 and FeGaInSe4. Journal of Phase Equilibria and Diffusion. 2019;40(6): 787–796. https://doi.org/10.1007/s11669-019-00768-2
Mammadov F. M., Imamaliyeva S. Z., Amiraslanov I. R., Babanly M. B. The phase diagram of the FeGa2Se4–FeIn2 Se4 system and the crystal structure of FeGaInSe. Condensed Matter and Interphases. 2018;20 (4): 604–610. (In Russ., abstract in Eng.). https://doi.org/10.17308/kcmf.2018.20/633
Mammadov F. М. , Amiraslanov I. R. , Aliyeva Y. R., Ragimov S. S., Mashadiyeva L. F., Babanly M. B. Phase equilibria in the MnGa2Tе4-MnIn2Tе4 system, crystal structure and physical properties of MnGaInTе4. Acta Chimica Slovenica. 2019;66(2): 466–472. https://doi.org/10.17344/acsi.2019.4988
Mammadov F. M., Babanly D. M., Amiraslanov I. R., Tagiev D. B., Babanly M. B. FeS–Ga2S3–In2S3 system. Russian Journal of Inorganic Chemistry. 2021;66(10): 1533–1543. https://doi.org/10.1134/S0036023621100090
Binary alloy phase diagrams. Massalski T. B. (ed.). ASM International, Materials Park, Ohio, USA: 1990. 3875 p.
Phase Diagrams for Binary Alloys..Okamoto H. (ed.), 2nd Edition. ASM International, Materials Park, Ohio, USA: 2010. 900 p.
Mammadov F. M. New version of the phase diagram of the MnTe–Ga2Te3 system. New Materials, Compounds and Applications. 2021;5(2): 116–121.Available at: http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V5N2/MammadovF.pdf
Mammadov F. M. Refinement of the phase diagram of the MnTe–In2Te3 system. Azerbaijan Chemical Journal. 2021;2: 37–41. https://doi.org/10.32737/0005-2531-2021-2-37-41
Chevalier P. Y., Fischer E., Marbeuf A. A thermodynamic evaluation system of the Mn–Te binary. Thermochimica Acta. 1993;223: 51–63. https://doi.org/10.1016/0040-6031(93)80119-U
Range K.-J., Hubner H.-J. MnGa2Se4 and MnGa2Te4 . Zeitschrift für Naturforschung B. 1976;31(6): 886–887. https://doi.org/10.1515/ZNB-1976-0632
Cannas M., Garbato A., Garbato L., Ledda F., Navarra G. Crystal growth and structure of MnGa2Te4.Progress in Crystal Growth and Characterization of Materials. 1996; 32: 171–183. https://doi.org/10.1016/0960-8974(95)00020-8
Copyright (c) 2022 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.