Confirmation of spontaneous doping of GaN nanowires grown on vicinal SiC/Si substrate by electron beam induced current mapping

  • Rodion R. Reznik St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russian Federation; Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation; Institute for Analytical Instrumentation of the Russian Academy of Sciences, 26 Rizhsky st., St. Petersburg 190103, Russian Federation https://orcid.org/0000-0003-1420-7515
  • Vladislav O. Gridchin St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russian Federation; Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation; Institute for Analytical Instrumentation of the Russian Academy of Sciences, 26 Rizhsky st., St. Petersburg 190103, Russian Federation https://orcid.org/0000-0002-6522-3673
  • Konstantin P. Kotlyar St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russian Federation; Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation; Institute for Analytical Instrumentation of the Russian Academy of Sciences, 26 Rizhsky st., St. Petersburg 190103, Russian Federation https://orcid.org/0000-0002-0305-0156
  • Vladimir V. Neploh Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation https://orcid.org/0000-0001-8158-0681
  • Andrei V. Osipov Institute for Problems in Mechanical Engineering of the Russian Academy of Science, 61 Boljshoy prospekt V.O., St. Petersburg 199178, Russian Federation https://orcid.org/0000-0002-2911-7806
  • Sergey A. Kukushkin Institute for Problems in Mechanical Engineering of the Russian Academy of Science, 61 Boljshoy prospekt V.O., St. Petersburg 199178, Russian Federation https://orcid.org/0000-0002-2973-8645
  • Omar Saket Centre de Nanosciences et de Nanotechnologies (C2N), University Paris-Saclay, 10 Boulevard Thomas, Gobert, Palaiseau 91120, France https://orcid.org/0000-0002-9002-5871
  • Maria Tchernycheva Centre de Nanosciences et de Nanotechnologies (C2N), University Paris-Saclay, 10 Boulevard Thomas, Gobert, Palaiseau 91120, France https://orcid.org/0000-0003-4144-0793
  • George E. Cirlin St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russian Federation; Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation; Institute for Analytical Instrumentation of the Russian Academy of Sciences, 26 Rizhsky st., St. Petersburg 190103, Russian Federation https://orcid.org/0000-0003-0476-3630
Keywords: Semiconductors, GaN, Nanowires, Molecular beam epitaxy, Spontaneous doping, Silicon, Silicon carbide, Electron beam induced current method

Abstract

       This study is devoted to the confirmation of spontaneous doping of GaN nanowires grown on vicinal SiC/Si hybrid substrates by electron beam induced current mapping.
       GaN nanowires (NWs) were grown on singular and vicinal SiC/Si substrates by molecular beam epitaxy with nitrogen plasma activation. The morphological properties of the NWs were studied by scanning electron microscopy. The electrophysical properties of the obtained nanostructures were studied by electron beam induced current mapping.
       By electron beam induced current mapping, we confirmed the spontaneous doping of the GaN NWs grown on vicinal SiC/Si wafers. It was also shown that the GaN NWs grown on singular SiC/Si substrates did not exhibit an induced current signal, indicating that they were not doped 

Downloads

Download data is not yet available.

Author Biographies

Rodion R. Reznik, St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russian Federation; Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation; Institute for Analytical Instrumentation of the Russian Academy of Sciences, 26 Rizhsky st., St. Petersburg 190103, Russian Federation

Cand. Sci. (Phys.–Math.), Head
of the Laboratory, St. Petersburg University; Alferov
University; Institute for Analytical Instrumentation
of the Russian Academy of Sciences (St. Petersburg,
Russian Federation)

Vladislav O. Gridchin, St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russian Federation; Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation; Institute for Analytical Instrumentation of the Russian Academy of Sciences, 26 Rizhsky st., St. Petersburg 190103, Russian Federation

Cand. Sci. (Phys.–Math.),
Junior Researcher, St. Petersburg University; Alferov
University; Institute for Analytical Instrumentation
of the Russian Academy of Sciences (St. Petersburg,
Russian Federation)

Konstantin P. Kotlyar, St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russian Federation; Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation; Institute for Analytical Instrumentation of the Russian Academy of Sciences, 26 Rizhsky st., St. Petersburg 190103, Russian Federation

Cand. Sci. (Phys.–Math.),
Junior Researcher, St. Petersburg University; Alferov
University; Institute for Analytical Instrumentation
of the Russian Academy of Sciences (St. Petersburg,
Russian Federation)

Vladimir V. Neploh, Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.),
Senior Researcher, Alferov University (St. Petersburg,
Russian Federation)

Andrei V. Osipov, Institute for Problems in Mechanical Engineering of the Russian Academy of Science, 61 Boljshoy prospekt V.O., St. Petersburg 199178, Russian Federation

Dr. Sci. (Phys.–Math.), Main
Researcher, Institute for Problems in Mechanical
Engineering of the Russian Academy of Sciences (St.
Petersburg, Russian Federation)

Sergey A. Kukushkin, Institute for Problems in Mechanical Engineering of the Russian Academy of Science, 61 Boljshoy prospekt V.O., St. Petersburg 199178, Russian Federation

Dr. Sci. (Phys.–Math.), Head
of Laboratory, Institute for Problems in Mechanical
Engineering of the Russian Academy of Sciences (St.
Petersburg, Russian Federation)

Omar Saket, Centre de Nanosciences et de Nanotechnologies (C2N), University Paris-Saclay, 10 Boulevard Thomas, Gobert, Palaiseau 91120, France

PhD, Researcher, Centre de
Nanosciences et de Nanotechnologies (C2N), de
l’université Paris-Saclay (Palaiseau, France)

Maria Tchernycheva, Centre de Nanosciences et de Nanotechnologies (C2N), University Paris-Saclay, 10 Boulevard Thomas, Gobert, Palaiseau 91120, France

Dr. Sci. (Phys.–Math.), Head
of Laboratory, Centre de Nanosciences et de
Nanotechnologies (C2N), de l’université Paris-Saclay
(Palaiseau, France)

George E. Cirlin, St. Petersburg State University, 7-9 Universitetskaya Embankment, St. Petersburg 199034, Russian Federation; Alferov University, 8/3 Khlopina st., St. Petersburg 194021, Russian Federation; Institute for Analytical Instrumentation of the Russian Academy of Sciences, 26 Rizhsky st., St. Petersburg 190103, Russian Federation

Dr. Sci. (Phys.–Math.), Head of
Laboratory, St Petersburg University; Alferov
University; Institute for Analytical Instrumentation
of the Russian Academy of Sciences (St. Petersburg,
Russian Federation)

References

Kente T., Mhlanga S. D. Gallium nitride nanostructures: Synthesis, characterization and applications. Journal of Crystal Growth. 2016;444: 55–72. https://doi.org/10.1016/j.jcrysgro.2016.03.033

Patra S. K., Schulz S. Electrostatic built-in fields in wurtzite III-N nanostructures: Impact of growth plane on second-order piezoelectricity. Physical Review B. 2017;96(15): 155307. http://dx.doi.org/10.1103/PhysRevB.96.155307

Gridchin V. O., Kotlyar K. P., Reznik R. R., Borodin B. R., Kudryashov D. A., Alekseev P. A., Cirlin G. E. Electrical properties of InGaN nanostructures with branched morphology synthesized via MBE on p-type Si (111). Journal of Physics: Conference Series. 2020;1695(1): 012030. https://doi.org/10.1088/1742-6596/1695/1/012030

Pearton S. J., Ren F. GaN electronics. Advanced Materials. 2000;12(21): 1571–1580. https://doi.org/10.1002/1521-4095(200011)12:21<1571::AIDADMA1571>3.0.CO;2-T

Chen F., Ji X., Lau S. P. Recent progress in group III-nitride nanostructures: From materials to applications. Materials Science and Engineering: R: Reports. 2020;142: 100578. https://doi.org/10.1016/j.mser.2020.100578

Gridchin V. O., Kotlyar K. P., Reznik R. R., … Cirlin G. G. Multi-colour light emission from InGaN nanowires monolithically grown on Si substrate by MBE. Nanotechnology. 2021;32(33): 335604. https://doi.org/10.1088/1361-6528/ac0027

Tijent F. Z., Voss P., Faqir M. Recent advances in InGaN nanowires for hydrogen production using photoelectrochemical water splitting. Materials Today Energy. 2023;33: 101275. https://doi.org/10.1016/j.mtener.2023.101275

Mäntynen H., Anttu N., Sun Z., Lipsanen H. Single-photon sources with quantum dots in III–V nanowires. Nanophotonics. 2019;8(5): 747–769. https://doi.org/10.1515/nanoph-2019-0007

Leandro L., Gunnarsson C. P., Reznik R., … Akopian, N. Nanowire quantum dots tuned to atomic resonances. Nano Letters. 2018;18(11): 7217–7221. https://doi.org/10.1021/acs.nanolett.8b03363

Heiss M., Fontana Y., Gustafsson A., … Fontcuberta i Morral A. Self-assembled quantum dots in a nanowire system for quantum photonics. Nature Materials. 2013;12(5): 439–444. https://doi.org/10.1038/NMAT3557

Deshpande S., Frost T., Yan L., … Bhattacharya P. Formation and nature of InGaN quantum dots in GaN nanowires. Nano Letters. 2015;15(3): 1647–1653. https://doi.org/10.1021/nl5041989

Consonni V. Self-induced growth of GaN nanowires by molecular beam epitaxy: A critical review of the formation mechanisms. Physica Status Solidi (RRL)–Rapid Research Letters. 2013;7(10): 699–712. https://doi.org/10.1002/pssr.201307237

Arthur J. R. Molecular beam epitaxy. Surface Science. 2002;500(1-3): 189–217.

Dubrovskii V. G. Theory of diffusion-induced selective area growth of III-V nanostructures. Physical Review Materials. 2023;7(2): 026001. https://doi.org/10.1103/PhysRevMaterials.7.026001

Tribu A., Sallen G., Aichele T., … Kheng K. A high-temperature single-photon source from nanowire quantum dots. Nano Letters. 2008;8(12): 4326–4329.https://doi.org/10.1021/nl802160z

Alekseev P. A., Sharov V. A., … Lähderanta E. Piezoelectric current generation in wurtzite GaAs nanowires. Physica Status Solidi (RRL) – Rapid Research Letters. 2018;12(1): 1700358. https://doi.org/10.1002/pssr.201700358

Cirlin G. E., Reznik R. R., Shtrom I. V., … Akopian N. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates. Journal of Physics D: Applied Physics. 2017;50(48): 484003. https://doi.org/10.1088/1361-6463/aa9169

Cirlin G. E., Dubrovskii V. G., Soshnikov I. P., … Glas F. Critical diameters and temperature domains for MBE growth of III–V nanowires on lattice mismatched substrates. Physica Status Solidi (RRL) – Rapid Research Letters. 2009:3(4): 112-114. https://doi.org/10.1002/pssr.200903057

Talalaev V. G., Tomm J. W., Kukushkin S. A., … Cirlin G. E. Ascending Si diffusion into growing GaN nanowires from the SiC/Si substrate: up to the solubility limit and beyond. Nanotechnology. 2020;31(29): 294003. https://doi.org/10.1088/1361-6528/ab83b6

Lavenus P., Messanvi A., Rigutti L. … Tchernycheva M. Experimental and theoretical analysis of transport properties of core–shell wire light emitting diodes probed by electron beam induced current microscopy. Nanotechnology. 2014;25(25): 255201. https://doi.org/10.1088/0957-4484/25/25/255201

Yakimov E. B., Borisov S. S., Zaitsev S. I. EBIC measurements of small diffusion length in semiconductor structures. Semiconductors. 2007;41: 411–413. https://doi.org/10.1134/s1063782607040094

Published
2023-10-12
How to Cite
Reznik, R. R., Gridchin, V. O., Kotlyar, K. P., Neploh, V. V., Osipov, A. V., Kukushkin, S. A., Saket, O., Tchernycheva, M., & Cirlin, G. E. (2023). Confirmation of spontaneous doping of GaN nanowires grown on vicinal SiC/Si substrate by electron beam induced current mapping. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(4), 526-531. https://doi.org/10.17308/kcmf.2023.25/11474
Section
Original articles

Most read articles by the same author(s)