THE AV–BVI–I TERNARY SYSTEMS: A BRIEF REVIEW ON THE PHASE EQUILIBRIA REVIEW
Abstract
This paper presents a brief review on the ternary phase equilibria in the ternary AV–BVI–I systems (AV = Sb, Bi; BVI = S, Se, Te). These systems includes the series of ternary compounds those are very attractive source materials for photo-, thermos- and ferroelectric energy transformation along the recently discovered semiconductors that exhibit Rashba-type spin splitting in their surface states. In the Rashba semiconductors, a unique toroidal 3D Fermi surface appears on the crystal surface, which leads to unusual properties that make it possible to realize unique electronic devices based on these compounds. The thorough knowledge on the ternary phase diagram of these systems shed light on the chemical and structural design of new multifunctional materials with tunable properties. This knowledge is very important when
focusing on the chemistry of such multifunctional materials based on complex element systems.
REFERENCES
- Audzijonis A., Sereika R., Ћaltauskas R. Antiferroelectric phase transition in SbSI and SbSeI crystals. Solid State Commun., 2008, v. 147(3–4), pp. 88–89.
- Łukaszewicz K., Pietraszko A., Kucharska M. Diffuse Scattering, Short Range Order and Nanodomains in the Paraelectric SbSI. Ferroelectrics, 2008, v. 375(1), pp.170–177. https://doi.org/1080/00150190802438033
- Audzijonis A., Gaigalas G., Ţigas L., Sereika R., Ţaltauskas R., Balnionis D., Rëza A. Electronic structure and optical properties of BiSeI crystal. Phys. Status Solidi B, 2009, v. 246(7), pp. 1702–1708. https://doi.org/10.1002/pssb.200945110
- Audzijonis A., Zaltauskas R., Sereika R., Zigas L., Reza A. Electronic structure and optical properties of BiSI crystal. J. Phys. Chem. Solids. 2010, v. 71(6), pp. 884-891. https://doi.org/10.1016/j.jpcs.2010.03.042
- Ganose A. M., Butler K. T., Walsh A., Scanlon D. O. Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J. Mater. Chem. A, 2016, v. 4(6), pp. 2060-2068. https://doi.org/10.1039/c5ta09612j
- Gerzanich E.I., Fridkin V.M. Ferroelectric materials of type AVBVICVII. Moscow, Nauka Publ., 1982. (in Russ.)
- Pierrefeu A., Steigmeier E. F., Dorner B. Inelastic neutron scattering in SbSI near the ferroelectric phase transformation. Phys. Status Solidi B, 1977, v. 80(1), pp. 167–171. https://doi.org/10.1002/pssb.2220800119
- Žičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B, 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225
- Rao K. K., Chaplot S. L. Dynamics of Paraelectric and Ferroelectric SbSI. Phys. Status Solidi B, 1985, v. 129(2), pp. 471–482. https://doi.org/10.1002/pssb.2221290204
- Grigas J., Talik E., Lazauskas V. Splitting of the XPS in ferroelectric SbSI crystals. Ferroelectrics, 2003, v. 284(1), pp. 147–160. https://doi.org/10.1080/00150190390204790
- Audzijonis A., Ћaltauskas R., Ћigas L., Vinokurova I. V., Farberovich O. V., Pauliukas A., Kvedaravičius A. Variation of the energy gap of the SbSI crystals at ferroelectric phase transition. Physica B, 2006, v. 371(1), pp. 68–73. https://doi.org/10.1016/j.physb.2005. 09.039
- Nowak M., Nowrot A., Szperlich P., Jesionek M., Kępińska M., Starczewska A., Mistewicz K., Stróż D., Szala J., Rzychoń T., Talik E., Wrzalik R. Fabrication and characterization of SbSI gel for humidity sensors. Sens. Actuators A, 2014, v. 210, pp. 119–130. https://doi.org/10.1016/j.sna.2014.02.012
- Ishizaka K., Bahramy M. S., Murakawa H., Sakano M., Shimojima T., Sonobe T., Koizumi K., Shin S., Miyahara H., Kimura A., Miyamoto K., Okuda T., Namatame H., Taniguchi M., Arita R., Nagaosa N., Kobayashi K., Murakami Y., Kumai R., Kaneko Y., Onose Y., Tokura Y. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater., 2011, v. 10(7), pp. 521–526. https://doi.org/10.1038/nmat3051
- Landolt G., Eremeev S. V., Koroteev Yu. M., Slomski B., Muff S., Neupert T., Kobayashi M., Strocov V. N., Schmitt T., Aliev Z. S., Babanly M. B., Amiraslanov I. R., Chulkov E. V., Osterwalder J., Dil J. H. Phys. Rev. Lett., 2012, v. 109(11), p. 116403. https://doi.org/10.1103/physrevlett.109.116403
- Bahramy M. S., Yang B.-J., Arita R., Nagaosa N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nature Commun., 2012, v. 3(1), p. 679. https://doi.org/10.1038/ncomms1679
- Landolt G., Eremeev S. V., Tereshchenko O. E., Muff S., Slomski B., Kokh K. A., Kobayashi M., Schmitt T., Strocov V. N., Osterwalder J., Chulkov E. V., Dil J. H. Bulk and surface Rashba splitting in single termination BiTeCl. New J. Phys., 2013, v. 15(8), p. 085022. https://doi.org/10.1088/1367-2630/15/8/085022
- Fiedler S., Bathon T., Eremeev S. V., Tereshchenko O. E., Kokh K. A., Chulkov E. V., Sessi P., Bentmann H., Bode M., Reinert F. Termination-dependent surface properties in the giant-Rashba semiconducto rsBiTeX(X=Cl, Br, I). Phys. Rev. B., 2015, v. 92(23), p. 235430. https://doi.org/10.1103/physrevb.92.235430
- Bahramy M. S., Ogawa N. Bulk Rashba semiconductors and related quantum phenomena. Adv. Mater., 2017, v. 29(25), p. 1605911. https://doi.org/10.1002/adma.201605911
- Gottstein G. Physical Foundations of Materials Science. Springer-Verlag Berlin Heidelberg, XIV, 2004, 502 p.
- Babanly M. B., Chulkov E. V., Aliev Z. S., Shevelkov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russ. J. Inorg. Chem., 2017, v. 62(13), pp. 1703–1729. https://doi.org/10.1134/s0036023617130034
- Žičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B., 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225
- Belyayev L. M., Lyakhovitskaya V. A., Netesov G. B., Mokhosoev M.V., Aleykina S.M. Synthesis and crystallization of antimony sulfoiodide. Izv. Akad. Nauk, Neorg. Mater., 1965, v. 1(12), pp. 2178–2181. (in Russ.)
- Ryazantsev A. A., Varekha L. M., Popovkin B. A., Lyakhovitskaya V. A., Novoselova A. V. Р–T–x phase diagram of the SbI3–Sb2S3 system. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(7), pp. 1296–1297 (in Russ.)
- Aliev Z. S., Musayeva S. S., Babanly M. B. The phase relationships in the Sb–S–I system and thermodynamic properties of the SbSI. J. Phase Equilib. Diffus., 2017, v. 38, pp. 887–896. https://doi.org/10.1007/s11669-017-0601-4
- Lukaszewicz K., Pietraszko A., Stepen’ Damm Yu., Kajokas A. Crystal structure and phase transitions of the ferroelectric antimony sulfoiodide SbSI. Part II. Crystal structure of SbSI in phases I, II and III. Pol. J. Chem., 1997, v. 71, pp. 1852–1857.
- Itoh K., Matsunaga H. A study of the crystal structure in ferroelectric SbSI. Zeitschrift für Krist., 1980, v. 152(3-4), p. 309–315. https://doi.org/10.1524/zkri.1980.152.3-4.309
- Aliev Z. S., Musaeva S. S., Babanly D. M., Shevelkov A. V., Babanly M. B. Phase diagram of the Sb–Se–I system and thermodynamic properties of SbSeI. J. Alloys Compd., 2010, v. 505(2), pp. 450–455. https://doi.org/10.1016/j.jallcom.2010.06.103
- Belotskiy D. P., Lapshin V. F., Boychuk R. F., Novalkovskiy N. P. The Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1972, v. 8(3), pp. 572–574. (in Russ.)
- Dolgikh V. A., Popovkin B. A., Odin I. N., Novoselova A. V. Р–Т–х phase diagram of the Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(6), pp. 919–922. (in Russ.)
- Rodionov Yu. I., Klokman V. V., Myakishev K. G. The solubility of semiconductor compounds AIIBVI, AIVBIV and AVBVI in halide melts. Russ. J. Inorg. Chem., 1973, v. 17(3), pp. 846–849. (in Russ.)
- Chervenyuk G. I., Niyger F. V., Belotskiy D. P., Novalkovskiy N. P. Investigation of the phase equilibria in the SbSI–Sb, SbSI–S, SbSI–I systems. Izv. Akad. Nauk, Neorg. Mater., 1977, v. 13(6), pp. 989–991. (in Russ.)
- Aliev Z. S., Babanly M. B., Babanly D. M., Shevelkov A. V., Tedenac J. C. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI. Int. J. Mat. Res., 2012, v. 103(3), pp. 290–295. https://doi.org/10.3139/146.110646
- Belotskiy D. P., Antipov I. N., Nadtochiy V. F., Dodik S.M. Physicochemical investigations of the PbI2–SnI2, CdI2–ZnI2, BiI3–SbI3, Sb2Te3–SbI3, Bi2Te3–BiI3 systems. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(10), pp. 1663–1667. (in Russ.)
- Belotskiy D. P., Dodik S. M., Antipov I. N., Nefedov Z. I. Synthesis and investigation of the telluroiodides of antimony and bismuth. Ukr. Chem. J., 1970, v. 36, pp. 897–900. (in Russ.)
- Aleshin V. A., Valitova N. R., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the antimony iodide system – antimony telluride. Izv. Akad. Nauk, Zhur. Fiz. Khim., 1974, v. 48, p. 2395. (in Russ.)
- Valitova N. R., Popovkin B. A., Novoselova A. V., Aslanov L. A. The compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9, pp. 2222–2223. (in Russ.)
- Turyanitsa I. D., Olekseyuk I. D., Kozmanko I. I. Investigation of the Sb2Te3–SbI3 system and properties of the compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(8), pp. 433–1434. (in Russ.)
- Voutsas G. P., Rentzeperis P. J. The crystal structure of antimony selenoiodide, SbSeI. Zeitschrift für Kristallographie, 1983, v. 161(1–2), pp. 111–118. https://doi.org/10.1524/zkri.1982.161.1-2.111
- Kikuchi A., Oka Y., Sawaguchi E. Crystal Structure Determination of SbSI. J. Phys. Soc. Jap., 1967, v. 23(2), pp. 337–354. https://doi.org/10.1143/jpsj.23.337
- Kichambare P., Sharon M. Preparation, characterization and physical properties of mixed Sb1–xBixTeI. Solid State Ionics, 1997, v. 101–103, pp. 155–159. https://doi.org/10.1016/s0167-2738(97)84024-6
- Shevelkov A. V., Dikarev E. V., Shpanchenko R. V., Popovkin B.A. Crystal structures of bismuth tellurohalides BiTeX (X = Cl, Br, I) from X-ray powder diffraction data. J. Solid State Chem., 1995, v. 114(2), pp. 379–395. https://doi.org/10.1006/jssc.1995.1058
- Aliev Z. S., Jafarov Y. I., Jafarli F. Y., Shevelkov A. V., Babanly M. B. The phase equilibria in the Bi–S–I ternary system and thermodynamic properties of the BiSI and Bi19S27I3 ternary compounds. J. Alloys Compd. 2014, v. 610, pp. 522–528. https://doi.org/10.1016/j.jallcom.2014.05.015
- Ryazantsev T. A., Varekha L. M., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the BiI3–Bi2S3 system. Izv. Akad. Nauk, Neorg. Mater., 1970, v. 6, pp. 1175–1179. (in Russ.)
- Oppermann H., Petasch U. Zu den pseudobinären Zustandssystemen Bi2Ch3-BiX3 und den ternären Phasen auf diesen Schnitten (Ch = S, Se, Te; X = Cl, Br, I), I: Bismutsulfi dhalogenide/The Pseudobinary Systems Bi2Ch3–BiX3 and the Ternary Phases on their Boundary Lines (Ch = S, Se, Te; X = Cl, Br, I), I: Bismuth Sulfi de Halides. Z. Naturforsch. 2003, v. 58b, pp. 725–740. https://doi.org/10.1515/znb-2003-0803 (in German)
- Haase-Wessel W. Die Kristallstruktur des Wismutsulfi djodids (BiSJ). Naturwissenschaften, 1973, v. 60, pp. 474–474. https://doi.org/10.1007/bf00592859 (in German)
- Miehe G., Kupcik V. Die Kristallstruktur des Bi(Bi2S3)9J3. Naturwissenschaften, 1971, v. 58, pp. 219–219. DOI: 10.1007/bf00591851 (in German)
- Turjanica I. D., Zajachkovskii N. F., Zajachkovskaja N. F., Kozmanko I. I. Investigation of the BiI3–Bi2Se3 system. Izv. Akad. Nauk, Neorg. Mater., 1974, v. 11(10), p. 1884. (in Russ.)
- Belotskii D. P., Lapsin V. F., Baichuk R. F. The BiI3–Bi2Se3 system. Izv. Akad. Nauk Neorg. Mater., 1971, v. 7(11), p. 1936. (in Russ.)
- Dolgikh V. A., Odin I. N., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the BiI3–Bi2Se3 system. Vestn. Mosk. Univ., Dep. VINITI., 1973, v. 23(3), Dep. No. 5683-73. (in Russ.)
- Dolgikh V. A., Popovkin B. A., Ivanova G. I., Novoselova A. V. Investigation of the sublimation of the SbSeI and BiSeI. Izv. Akad. Nauk, Neorg. Mater., 1975, v. 11(4), p. 637. (in Russ.)
- Petasch U., Goebel H., Oppermann H. Untersuchungen zum quasibinären System Bi2Se3/BiI3. Z. Anorg. Allg. Chem., 1998, v. 624, p. 1767. https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1767::aidzaac1767>3.0.co;2-t (in German)
- Doenges E. Z. Über Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. II. Über Selenohalogenide des dreiwertigen Antimons und Wismuts und über Antimon(III)-selenid Mit 2 Abbildungen. Anorg. Allg. Chem., 1950, v. 263(5–6), pp. 280–291. https://doi.org/10.1002/zaac.19502630508 (in German)
- Braun T. P., DiSalvo F. J. Bismuth selenide iodide. Acta Crystallogr., 2000, v. C56(1), pp. e1–e2. https://doi.org/10.1107/s0108270199016017
- Chervenyuk G. I., Babyuk P. F., Belotskii D. P., Chervenyuk T. G. Phase equilibria in the Bi–Se–I system along the BiSeI–Bi and BiSeI–BiI sections. Izv. Akad. Nauk, Neorg. Mater., 1982, v. 18, pp. 1569–1572. (in Ukr.)
- Babanly M. B., Tedenac J. C., Aliev Z. S., Balitsky D. M. Phase equilibriums and thermodynamic properties of the system Bi–Te–I. J. Alloys Compd., 2009, v. 481, pp. 349–353. https://doi.org/10.1016/j.jallcom.2009.02.139
- Horak J., Rodot H. Preparation de cristaux du compose BiTeI. C. R. Acad. Sci. Paris Serie B, 1968, v. 267(6), pp. 363–366.
- Valitova N. R., Aleshin V. A., Popovkin B. A., Novoselova A. V. Investigation of the P-T-x phase diagram for the BiI3–Bi2Te3 system. Izv. Akad. Nauk, Neorg. Mater., 1976, v. 12(2), pp. 225–228. (in Russ.)
- Tomokiyo A., Okada T., Kawanos S. Phase diagram of system (Bi2Te3)–(BiI3) and crystal structure of BiTeI. Jpn. J. Appl. Phys. 1977, v. 16(6), pp. 291–298. https://doi.org/10.1143/jjap.16.291
- Evdokimenko L. T., Tsypin M. I. The effect of halogens on the structure and properties of alloys based on Bi2Te3. Izv. Akad. Nauk, Neorg. Mater., 1971, v. 7(8), pp. 1317–1320. (in Russ.)
- Savilov S. V., Khrustalev V. N., Kuznetsov A. N., Popovkin B. A., Antipin Ju.M. New subvalent bismuth telluroiodides incorporating Bi2 layers: the crystal and electronic structure of Bi2TeI. Russ. Chem. Bull., 2005, v. 54(1), pp. 87–92. https://doi.org/10.1007/s11172-005-0221-8