The effect of the chemical compositions of palladium alloys on their hydrogen permeability

  • Natalia B. Morozova Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Baikova Institute of Metallurgy and Materials Science Russian Academy of Sciences, 49 Leninsky pr., Moscow 119334, Russian Federation https://orcid.org/0000-0003-4011-6510
  • Alexey I. Dontsov Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Baikova Institute of Metallurgy and Materials Science Russian Academy of Sciences, 49 Leninsky pr., Moscow 119334, Russian Federation https://orcid.org/0000-0002-3645-1626
  • Daria A. Pogorelova Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0009-0002-0488-5080
  • Tatyana V. Dubovitskaya Baikova Institute of Metallurgy and Materials Science Russian Academy of Sciences, 49 Leninsky pr., Moscow 119334, Russian Federation https://orcid.org/0000-0003-2201-705X
Keywords: palladium, Pd-7Y, Pd-5Pb, Pd-6Ru alloys, hydrogen permeability, atomic hydrogen, phase-boundary transition, membrane separation

Abstract

The purpose of the article is to identify the effect of the alloying element in palladium alloys on their parameters of hydrogen permeability.

Cyclic voltammetry and anodic-cathodic chronoamperometry were used to study the electrochemical behavior of coldrolled alloys of Pd-5Pb, Pd-6Ru, and Pd-7Y systems (wt. %) in the processes of atomic hydrogen injection and extraction in a deaerated aqueous solution of 0.1 M H2SO4.

The study identified the role of lead, ruthenium, and yttrium in the processes of atomic hydrogen injection and ionization. Voltammetry and chronoamperometry data indicate a higher ionization rate for the Pd-6Ru alloy. The parameters of hydrogen permeability calculated from the cathodic current drops show that the hydrogen permeability of alloys varies in the series: Pd-6Ru > Pd-7Y > Pd-5Pb. The effective constant of the injection rate coincides for all alloys within the measurement error, whereas the effective constant of the extraction rate of atomic hydrogen is higher for Pd–5Pb. The marginal solubility of ruthenium in the Pd-6Ru alloy contributes to the passivation of grain boundaries in the alloy with excess ruthenium. As a result, there is preferential movement of hydrogen solely along the grain body. This results in higher hydrogen permeability

Downloads

Download data is not yet available.

Author Biographies

Natalia B. Morozova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Baikova Institute of Metallurgy and Materials Science Russian Academy of Sciences, 49 Leninsky pr., Moscow 119334, Russian Federation

Cand. Sci. (Chem.), Associate
Professor, Department of Physical Chemistry,
Voronezh State University (Voronezh, Russian
Federation); Senior Researcher, Baikova Institute of
Metallurgy and Materials Science Russian Academy of
Sciences (Moscow, Russian Federation)

Alexey I. Dontsov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Baikova Institute of Metallurgy and Materials Science Russian Academy of Sciences, 49 Leninsky pr., Moscow 119334, Russian Federation

Cand. Sci. (Phys.–Math.),
Associate Professor, Department of Materials Science
and Industry of Nanosystems, Voronezh State
University (Voronezh, Russian Federation); Senior
Researcher, Baikova Institute of Metallurgy and
Materials Science Russian Academy of Sciences
(Moscow, Russian Federation)

Daria A. Pogorelova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

2nd year master’s student of
the Department of Physical Chemistry, Voronezh state
University (Voronezh, Russian Federation)

Tatyana V. Dubovitskaya, Baikova Institute of Metallurgy and Materials Science Russian Academy of Sciences, 49 Leninsky pr., Moscow 119334, Russian Federation

Cand. Sci. (Pedagogical),
Senior Researcher, Baikova Institute of Metallurgy and
Materials Science Russian Academy of Sciences
(Moscow, Russian Federation)

References

Chen W. H., Chen C. Y. Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Applied Energy. 2020:258: 114078. https://doi.org/10.1016/j.apenergy.2019.114078

Fan L., Li C., Aravind P., Cai W., Han M., Brandon N. Methane reforming in solid oxide fuel cells: challenges and strategies. Journal of Power Sources. 2022:538: 231573. https://doi.org/10.1016/j.jpowsour.2022.231573

Shafiev D. R., Trapeznikov A. N., Hokhonov A. A., … Subcheva E. N. Methods for obtaining hydrogen on an industrial scale. Comparative analysis. Uspehi v himii i himicheskoj tehnologii. 2020:34(12): 53–57. (In Russ.). Available at: https://elibrary.ru/item.asp?id=44712152

Ockwig N. W., Nenoff T. M. Membranes for hydrogen separation. Chemical Reviews. 2007:107(10): 4078–4110. https://doi.org/10.1021/cr0501792

Shahbaz M., Al-Ansar T., Aslam M., … McKay G. A state of the art review on biomass processing and conversion technologies to produce hydrogen and its recovery via membrane separation. International Journal of Hydrogen Energy. 2020:45(30): 15166–15195. https://doi.org/10.1016/j.ijhydene.2020.04.009

Lin Y. M., Liu S. L., Chuang C. H., Chu Y. T. Effect of incipient removal hydrogen through palladium membrane on the conversion of methane steam reforming experimental and modelling. Catalysis Today. 2003:82(1-4): 127–139. https://doi.org/10.1016/S0920-5861(03)00212-8

Rahimpour M. R., Samimi F., Babapoor A., Tohidian T., Mohebi S. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review. Chemical Engineering and Processing: Process Intensification. 2017:121(1): 24–49. https://doi.org/10.1016/j.cep.2017.07.021

Tovbin Yu. K., Votyakov E. V. Effect of interstitial hydrogen on the properties of palladium membranes. Russian Journal of Physical Chemistry A. 2001:75(4): 640–645. Available at: https://elibrary.ru/item.asp?id=13382490

Roshan N., Gorbunov S., Chistov E., Karelin F., Kuterbekov K., Abseitov Ye. Palladiuum-based membranes for separation of high-purity hydrogen. Perspektivnye Materialy. 2020:6: 47–57. https://doi.org/10.30791/1028-978X-2020-6-47-57 (In Russ.)

Magnone E., Shin M. C., Lee J. I., Park J. H. Relationship between hydrogen permeability and the physical-chemical characteristics of metal alloy membranes. Journal of Membrane Science. 2023:674: 121513. https://doi.org/10.1016/j.memsci.2023.121513

Livshits A. I. The hydrogen transport through the metal alloy membranes with a spatial variation of the alloy composition: Potential diffusion and enhanced permeation. International Journal of Hydrogen Energy. 2017:42(18): 13111–13119. https://doi.org/10.1016/j.ijhydene.2017.04.016

Burhanov G. S., Gorina N. B., Kolchugina N. B., Roshan N. R., Slovetsky D. I., Chistov E. M. Palladiumbased alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures. Platinum Metals Review. 2011:55(1): 3–12. https://doi.org/10.1595/147106711X540346

Avdyuhina V. M., Burhanov G. S., Nazmutdinov A. Z., Roshan N. R. Hydrogen and vacancy induced structural and phase transformations in Pd-Ru alloy foils. Perspektivnye Materialy. 2011:11: 68–72. (In Russ.). Availably at: https://www.elibrary.ru/item.asp?id=17561288

Pogorelova D. A., Morozova N. B., Vvedenskii A. V. The influence of ruthenium, yttrium and lead on the hydrogen permeability of palladium-based alloys*. Elektrohimija i korrozija metallov i splavov: Proc. All-Rus. Conf., 4-5 Octjber 2023, Voronezh: VSU Publ.; 2023. p. 47-79. (In Russ.)

Hubkowska K., Koss U., Lukaszewsk M., Czerwinski A. Hydrogen electrosorption into Pd-rich Pd-Ru alloys. Journal of Electroanalytical Chemistry. 2013:704: 10–18. https://doi.org/10.1016/j.jelechem.2013.06.004

Ryi S. K., Li A., Lim C. J., Grace J. R. Novel nonalloy Ru/Pd composite membrane fabricated by electroless plating for hydrogen separation. International Journal of Hydrogen Energy. 2011:36(15): 9335–9340. https://doi.org/10.1016/j.ijhydene.2010.06.014

Gade S. K., Keeling M. K., Davidson A. P., Hatlevik O., Way J. D. Palladium–ruthenium membranes for hydrogen separation fabricated by electroless codeposition. International Journal of Hydrogen Energy. 2009:34(15). 6484–6491. https://doi.org/10.1016/j.ijhydene.2009.06.037

Liu J., Bellini S., deNooijer N. C. A., … Caravella A. Hydrogen permeation and stability in ultra-thin Pd-Ru supported membranes. International Journal of Hydrogen Energy. 2020:45(12): 7455–7467. https://doi.org/10.1016/j.ijhydene.2019.03.212

Hughes D. T., Harris I. R. Hydrogen diffusion membranes based on some palladium-rare earth solid solution alloys. Zeitschrift für Physikalische Chemie. 1979:117(117): 185–193. https://doi.org/10.1524/zpch.1979.117.117.185

Hughes D. T., Evans J., Harris I. R. The The influence of order on hydrogen diffusion in the solid solution alloys Pd-5.75at.%Ce and Pd-8at.%Y. Journal of the Less-Common Metals. 1980:74(2): 255–262. https://doi.org/10.1016/0022-5088(80)90160-5

Wang D., Flanagan T. B., Shanahan K. Diffusion of H through Pd–Y alloy membranes. Journal of Membrane Science. 2016:499: 452-461. https://doi.org/10.1016/j.memsci.2015.10.020

Wileman R. C. J., Doyle M., Harris I. R. A Comparison of the permeability, solubility, and diffusion characteristics of H and D in a palladium–8% yttrium and palladium–25% silver solid solution alloy. Zeitschrift für Physikalische Chemie. 1989:164: 797–802. https://doi.org/10.1524/zpch.1989.164.part_1.0797

Phase diagrams of binary metal systems*. Handbook in 3 volumes / N. N. Lyakishev (eds.). Moscow: Izd-vo Mashinostroenie Publ., 1996. 872 p. (In Russ.)

Morozova N. B., Dontsov A. I., Fedoseeva A. I., Vvedensky A. V. Hydrogen permeability of Pd-Pb foils of various compositions. Condensed Matter and Interphases. 2023;24(1): 85–94. https://doi.org/10.17308/kcmf.2023.25/10977

Hu Z., Li H., Zhao W., Zhou W., Hu S. Microstructure determination of PdRu immiscible alloys based on electron-pair distribution function and local elemental segregation. Cell Reports PhysicalScience. 2023:4(12): 101713. https://doi.org/10.1016/j.xcrp.2023.101713

Ievlev V. M., Burkhanov G. S., Maksimenko A. A., ... Roshan N. R. Structure and properties of Pd-Ru membrane alloy foil produced in the process of magnetron sputtering. Inorganic Materials: Applied Research. 2014: 5(4): 303–306. https://doi.org/10.1134/S2075113314040248

Gabrielli C., Grand P. P., Lasia A., Perrot H. Investigation of hydrogen adsorption-absorbtion into thin palladium films. I. Theory. Journal of The Electrochemical Society. 2004:151(11): A1925–A1936. https://doi.org/10.1149/1.1797033

Gabrielli C., Grand P. P., Lasia A., Perrot H. Investigation of hydrogen adsorption-absorbtion into thin palladium films. II. Cyclic voltammetry. Journal of The Electrochemical Society. 2004:151(11): A1937–A1942. https://doi.org/10.1149/1.1797035

Fedoseeva A. I., Morozova N. B., Dontsov A. I., Kozaderov O. A., Vvedensky A. V. Cold-rolled binary palladium alloys with copper and ruthenium: injection and extraction of atomic hydrogen. Russian Journal of Electrochemistry. 2022:58(9). 812–822. https://doi.org/10.1134/s1023193522090051

Morozova N. B., Vvedensky A. V., Beredina I. P. The phase-boundary exchange and the non-steadystate diffusion of atomic hydrogen in Cu-Pd and Ag-Pd alloys. Part I. Analysis of the model. Protection of Metals and Physical Chemistry of Surfaces. 2014:50(6): 699–704. https://doi.org/10.1134/S2070205114060136

Morozova N. B., Vvedensky A. V., Beredina I. P. Phase boundary exchange and nonstationary diffusion of atomic hydrogen in Cu-Pd and Ag-Pd alloys II experimental data. Protection of Metals and Physical Chemistry of Surfaces. 2015:51(1): 72–80. https://doi.org/10.1134/S2070205115010098

Kuznetsov V. V., Khaldeev G. V., Kichigin V. I. Hydrogenation of metals in electrolytes. Moscow: Mashinostroenie Publ.; 1993. 244 p. (In Russ.)

Didenko L. P., Sementsova L. A., Chizhov P. E., Babak V. N., Savchenko V. I. Separation performance of foils from Pd–In(6%)–Ru(0.5%), Pd–Ru(6%), and Pd—Ru(10%) alloys and influence of CO2, CH4, and water vapor on the H2 flow rate through the test membranes. Russian Chemical Bulletin. 2017:65(8): 1997–2003. https://doi.org/10.1007/s11172-016-1543‑4

Wang X., Feng X., Yang L., … Luo W. Highly efficient and direct recovery of low-pressure hydrogen isotopes from tritium extraction gas by PdY alloy membrane permeator. Fusion Engineering and Design. 2024:202: 114348. https://doi.org/10.1016/j.fusengdes.2024.114348

Ievlev V. M., Dontsov A. I., Novikov V. I., … Burkhanov G. S. Composite membranes based on Pd- Cu and Pd-Pb solid solutions. Metally. 2018:5: 70–74. Available at: https://w w w.elibrar y.ru/item.asp?id=36740359 (In Russ.)

Published
2024-07-12
How to Cite
Morozova, N. B., Dontsov, A. I., Pogorelova, D. A., & Dubovitskaya, T. V. (2024). The effect of the chemical compositions of palladium alloys on their hydrogen permeability. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(3), 474-482. https://doi.org/10.17308/kcmf.2024.26/12222
Section
Original articles