MODULATION OF THE ELECTRINIC STRUCTURE OF ULTRA-SHORT CARBON NANOTUBES (0,9) DOPED BY ALKALIC METALS

  • Grigory I. Glushkov postgraduate student, Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7 (952) 5461253, e-mail: green5708@yandex.ru
  • Andrei i V. Tuchin Cand. Sci. (Phys.-Math.), Assistant Professor, Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7 (908) 1485775, e-mail: a.tuchin@bk.ru
  • Eugene N. Bormontov Dr. Sci. (Phys.–Math.), Head of Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7 (473) 2208481, e-mail: me144@phys.vsu.ru
Keywords: spin, spintronics, carbon nanotube, doping, alkali metals

Abstract

The main task for modern spintronics is to find materials with high spin polarization that enable spin transport. Carbon nanomaterials are under special focus, including ultra-short carbon nanotubes (us-CNTs) which are thermodynamically stable and have high spin polarization. Synthesis methods for us-CNTs with a narrow distribution of the tube length and chirality have recently been developed.

The paper describes a numerical simulation experiment that was carried out by means of the method based on density functional theory. Its goal was to calculate the main electron structure parameters of alkali-metal doped us-CNTs to determine the conditions of intrinsic spin polarization.

It was established that in a close interval the 3k-rule does not work for metal tubes (0,9). There is a non-zero gap between the frontier molecular orbitals and the tube acts as a semiconductor. The gap between the highest occupied and the lowest unoccupied molecular orbitals depends on electron spin at the triplet state, thus the conductivity is spin-dependent, which makes it possible to use us-CNTs to construct transport devices. The energy gap decreases with an increase in tube length.

The controlled alkali metal doping modulates the energy gap that leads to the increase in conductivity and spin polarization in case of anion complexes.

Thus, the paper describes a technological way to modify the properties of us-CNTs to create functional spintronic devices.

ACKNOWLEDGEMENTS

The reported study was supported by the Russian Foundation for Basic Research (project No.6-32-00926 mol_a).

Downloads

Download data is not yet available.

References

1. Bhaattacharya S., Akande A. and Sanvito S. Chemical Communications, 2014, vol. 50, pp. 6626-6629. DOI: 10.1039/C4CC01710B
2. Awschalom D. D., Flatte M. E. Nature Communications, 2007, pp. 153-159. DOI: 10.1038/nphys551
3. Murat A., Rungger I., Jin C., Sanvito S. and Schwingenschlögl U. J. Phys. Chem. C, 2014, vol. 118, pp. 3319-3323. DOI: 10.1021/jp4100153
4. Sun L., Wei1 P., Wei J., Sanvito S. and Hou1 S. J. Phys. Condens. Matter, 2011,vol. 23, p. 425301.
5. Wu J., and Hagelberg F. Phys. Rev. B, 2010, vol. 81, pp. 155407-155415.
6. Kamil L., Ritschel M., Albrecht L., Krupskaya Y., Buchner B., Klingeler R. J. Phys.: Conf. Ser., 2010, vol. 200, pp. 072061. doi:10.1088/1742-6596/200/7/072061
7. Minot E. D., Yaish Y., Sazonova V., McEuen P. Nature, 2004, vol. 428, p. 536.
8. Jung H. Y., Jung S. M., Kim L. Carbon, 2008, vol. 46, no. 6, pp. 969–973. https://doi.org/10.1016/j.carbon.2008.03.006
9. Sanchez-Valencia J. R., Dienel T., Gröning O., et al. Nat. Lett., 2014, vol. 512, p. 61. DOI: 10.1038/nature13607.
10. Kato T., Hatakeyama R. ACS Nano, 2010, vol. 4 pp.7395-7400. DOI: 10.1021/nn102379p
11. Tuchin A. V., Nestrugina A. V., Bityutskaya L. A., Bormontov E. N. J. Phys.: Conf. Ser., 2014, vol. 541, p. 012008. DOI: 10.1088/1742-6596/541/1/012008
12. Cioslowski J., Rao N. and Moncrieff D. J. Am. Chem. Soc., 2002, vol. 124, p. 8485. DOI: 10.1021/ja0126879
13. Rocherfort A., Salahub D. R., et al. J. Phys. Chem. B, 1999, vol. 103, p. 641. DOI: 10.1021/jp983725m
14. Buonocore F., Trani F., Ninno D., et al. Nanotech, 2008, vol. 19, p. 025711 (6). DOI: 10.1088/0957-4484/19/02/025711.
15. Wang B.-C., Wang H.-W., Lin I.-C., Lin Y.-S., Chou Y.-M. and Chiu H.-L. J. Chin. Chem. Soc., 2002, vol. 50, p. 939.
16. Tuchin A. V., Ganin A. A., Zhukalin D. A., Bitytskaya L. A. and Bormontov E. N. Recent Advances in Biomedical & Chemical Engineering and Materials Science, 2014,vol. 1, p. 40.
17. Lu D., Li Y., Rotkin S. V., Ravaioli U., Schulten K. Nano Letters, 2004, vol. 4, p. 2383.
18. Yumura T., Hirahara K., Bandow S., et. al. Chemical Physics Letters, 2004,vol. 386, p. 38. https://doi.org/10.1016/j.cplett.2003.12.123
19. Parker S. F., Bennington S. M., Taylor J. W., Herman H., Silverwood I., Albers P., Refson K. Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 7789-7804. http://dx.doi.org/10.1039/C0CP02956D
20. Tuchin A. V., Bityutskaya L. A., Bormontov E. N. Eur. Phys. J. D, 2015, pp. 69:87. DOI: 10.1140/epjd/e2015-50440-2
21. Schettino V., Pagliai M., and Cardini G. J. Phys. Chem.: A, 2002, vol. 106, p. 1815. DOI: 10.1021/jp012680d
22. Hertel I. V., Steger H., de Vries J., Weisser B., Menzel C., Kamke W. Phys. Rev. Lett., 1992, vol. 68, p. 784. DOI:https://doi.org/10.1103/PhysRevLett.68.784
23. Yoo R. K., Ruscic B., Berkowitz J. J. Chem. Phys., 1992, vol. 96, p. 911.
24. de Vries J., Steger H., Kamke B., Menzel C., Weisser B., Kamke W., Hertel I. V. Chemical Physics Letters, 1992, vol. 188, p. 159. https://doi.org/10.1016/0009-2614(92)90001-4
25. Steger H., Holzapfel J., Hielscher A., Kamke W., Hertel I. V. Chemical Physics Letters, 1995, vol. 234, p. 455. https://doi.org/10.1016/0009-2614(94)01476-C
26. Brink C., Andersen L. H., Hvelplund P., Mathur D., Voldstad J. D. Chemical Physics Letters, 1995, vol. 233 p. 52. https://doi.org/10.1016/0009-2614(94)01413-P
27. Wang X. B., Ding C. F. and Wang L. S. J. Chem. Phys., 1999, vol. 110, p. 8217. https://doi.org/10.1063/1.478732
28. Dresselhaus M. S., Dresselhaus G. and Saito R. Carbon, 1995,vol. 33, p. 883. https://doi.org/10.1016/0008-6223(95)00017-8
29. Saito R., Fujita M., Dresselhaus G. and Dresselhaus M. Phys. Rev. B, 1992, vol. 46, p. 1804. DOI: https://doi.org/10.1103/PhysRevB.46.1804
30. Odom T. W., Huang J. L., Kim P. and Lieber C. M. Nature, 1998, vol. 391, p. 62. doi:10.1038/34145
31. Ouyang M., Huang J. L. and Lieber C. M. Acc. Chem. Res, 2002, vol. 35 p. 1018.
32. Belonenko M. B., Lebedev N. G., Pak A. V. Physics of the Solid State, 2011, vol. 53, № 8, pp. 1604 –1608. Available at: http://journals.ioffe.ru/articles/viewPDF/1530 (in Russian)
33. Belonenko M. B., Lebedev N. G., Pak A. V. Technical Physics Letters, 2011, vol. 37, no. 8, pp. 724–727. DOI: 10.1134/S1063785011080049
34. Glushkov G. I., Tuchin A. V., Efimov N. N., Bormontov E. N. Condensed Matter and Interphases, 2016, vol. 19, no. 1, pp. 37–41. Available at: http://www.kcmf.vsu.ru/resources/t_19_1_2017_004.pdf
35. Glushkov G. I., Tuchin A. V., Bityutskaya L. A. Journal of Nano and Microsystem Technique, 2016,vol. 18, pp. 531– 538.
36. Durgun E., Dag S., Bagci V. M. K., Gulseren O. Phys. Rev. B, 2003, vol. 67, pp. 201401–201404.
Published
2017-12-27
How to Cite
Glushkov, G. I., Tuchin, A. i V., & Bormontov, E. N. (2017). MODULATION OF THE ELECTRINIC STRUCTURE OF ULTRA-SHORT CARBON NANOTUBES (0,9) DOPED BY ALKALIC METALS. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 19(4), 502-508. https://doi.org/10.17308/kcmf.2017.19/228
Section
Статьи