QUANTUM-CHEMICAL STUDY OF 2D ALLOTROPES OF SILICON CARBIDE

  • Andrei V. Tuchin Cand. Sci. (Phys.–Math.), Associate Professor of the Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7 (908) 1485775, e-mail: a.tuchin@bk.ru
  • Larisa А. Bityutskaya Cand. Sci. (Chem.), Associate Professor of the Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7 (473) 2208481, e-mail: me144@phys.vsu.ru
  • Andrei V. Kalashnikov graduate student, Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7(951) 5503243, e-mail: akalash49@gmail.com
  • Eugene N. Bormontov Dr. Sci. (Phys.–Math.), Full Professor, Head of Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7 (473) 2208481, e-mail: me144@phys.vsu.ru
Keywords: SiC, 2D allotropes, quantum-chemical simulation, electronic structure

Abstract

Multilayer structures based on SiC are considered to be among the most promising materials of nanoelectronics, since they have a non-zero bandgap width up to 3.72 eV and can be used to produce heterostructures. The aim of the paper is to establish the dependency between the rearrangement of the electronic structure of 2D allotropes of silicon carbide and a successive change in the number and configuration of layers. The material of the study were single-layer silicon carbide and 6 allotropic modifications of SiC with the number of layers n = 2, 3. Quantum-chemical modelling of the electronic structure of 2D allotropes of silicon carbide was performed using the density functional theory (DFT) in the local spin density approximation (LSDA). It was established that multilayer structures of silicon carbide form a family of semiconductor materials with a bandgap width from 1.132 to 2.150 eV, whose properties are determined by the number and configuration of layers. It was also established that two- and three-layer 2D silicon carbide with the packaging type AAA is the most stable among the analysed allotropic modifications and has a maximum band gap of 2.150 and 1.568 eV. It was found that layer-by-layer growth of structures determines a change in the type of the semiconductor from a direct bandgap single-layer SiC to an indirect bandgap with the number of layers n= 2, 3. An exception is the metastable ABA structure with a direct bandgap of 1.339 and 1.132 eV (n = 2, 3). Since this allotropic modification has a structure similar to the structure of multigraphene, it can be stabilized in SiC/multigraphene heterostructures.

ACKNOWLEDGEMENTS

The reported study was supported by the Russian Foundation for Basic Research (project No. 16-43-360281 r_a).

Downloads

Download data is not yet available.

References

1. Polishhuk A. Components and Technologies, 2004, no. 5, pp. 20–23. (in Russian)
2. Rjabinina I. A., Rembeza S. I., Rembeza E. S. The Bulletin of Voronezh State Technical University, 2009, vol. 5, no. 12, pp. 198–202. (in Russian)
3. Chepurnov V. I., Fidman T. P. Microsystems Technology, 2002, no. 2, pp. 17–21. (in Russian)
4. Gurin A. S., Pecherskaja R. M. University Proceedings. Volga Region. Technical Sciences, 2014, no. 1 (29), pp. 46–53. Available at: http://izvuz_tn_eng.pnzgu.ru/files/izvuz_tn_eng.pnzgu.ru/05.pdf (in Russian)
5. Luchinin V., Tairov Ju. Modern Electronics, 2009, no. 7, pp. 12–15. Available at: https://www.soel.ru/upload/magazines/OPEN/SoEl_2009-7/SoEl_2009-7pr.html#12 (in Russian)
6. Gundiah G., Madhav G. V., Govindaraj A., Seikh M., Rao C. N. R. J. Mater. Chem., 2002, no. 5, pp. 1606–1611. DOI: 10.1039/B20161F. Available at: http://pubs.rsc.org/en/content/articlelanding/2002/jm/b200161f
7. Zhang Y., Wang L., He R., Chen X., Zhu J. Solid State Communications, 2001, vol. 118, no. 11, pp. 595–598. DOI: 10.1016/S0038-1098(01)00181-8. Available at: http://www.sciencedirect.com/science/article/pii/S0038109801001818?via%3Dihub
8. Pan Z., Lai H. L., Au F. C. K., Duan X., Zhou W., Shi W., Wang N., Lee C. S., Wong N. B., Lee S. T., Xie S. Adv. Mater., 2000, 12, pp. 1186–1190. DOI: 10.1002/1521-4095(200008)12:16<1186::AID-ADMA1186>3.0.CO;2-F. Available at: http://onlinelibrary.wiley.com/doi/10.1002/1521-4095(200008)12:16%3C1186::AID-ADMA1186%3E3.0.CO;2-F/full
9. Aleksandrov P. A., Belova N. E., Demakov K. D., Ivanova L. M., Kuznecov Ju. Ju., Stepanov N. V., Shemardov S. G. Questions of Atomic Science and Technology. Ser. Thermonuclear Synthesis, 2007, 1, pp. 68–75. (in Russian)
10. Emel'chenko G. A., Masalov V. M., Zhohov A. A., Maksimuk M. Ju., Fursova T. N., Bazhenov A. V., Zver'kova I. I., Hasanov S. S., Shtejnman Je. A., Tereshhenko A. N. Physics of the Solid State, 2011, vol. 53, 6, pp.1121-1063 DOI: https://doi.org/10.1134/S1063783411060096. Available at: https://link.springer.com/article/10.1134/S1063783411060096.
11. Kargin Ju. F., Ivicheva S. N., Lysenko A. S., Alad'ev N. A., Kucev S. V., Shvorneva L.I. Inorganic Materials, 2009, vol. 45, no. 7, p. 758. DOI: https://doi.org/10.1134/S0020168509070103. Available at: https://link.springer.com/article/10.1134/S0020168509070103
12. Borunova A. B., Streleckii A. N. Mudretsova S. N., Leonov A. V., Butyagin P. Ju. Colloid Journal, 2011, vol. 73, no. 5, pp. 605–613. DOI: 10.1134/S1061933X1104003X Available at: http://pleiades.online/cgi-perl/search.pl?type=abstract&name=colljour&number=5&year=11&page=605
13. Bolotnikova O. A. “High Technologies in Modern Science and Technology-2016”. Proceedings of the V International Conference, December 5-7, Tomsk, 2016, pp. 50–51. (in Russian)
14. Widmann M., Lee S.-Y., Rendler T., Son N. T., Fedder H., Paik S., Yang L.-P., Zhao N., Yang S., Booker I., Denisenko A., Momenzadeh S. A., Gerhardt I., Ohshima T., Gali A., Janzen E., Wrachtrup J. Nature Material, 2015, no. 14, pp. 164–168. DOI: 10.1038/ncomms8783. Available at: https://www.nature.com/articles/ncomms8783
15. Morello A. Nature Material, 2015, no. 14, pp. 135–136. DOI: 10.1038/nmat4171. Available at: http://www.nature.com/nmat/journal/v14/n2/full/nmat4171.html
16. Kou L., Ma Y., Tan X., Frauenheim T., Du A., Smith S. J. Phys. Chem. C, 2015, 119 (12), pp. 6918–6922. DOI: 10.1021/acs.jpcc.5b02096 Available at: http://pubs.acs.org/doi/ipdf/10.1021/acs.jpcc.5b02096
17. Li P., Zhou R., Zeng X. C. Nanoscale, 2014, no. 6, pp. 11685–11691. DOI: 10.1039/C4NR03247K Available at: http://pubs.rsc.org/en/content/articlehtml/2014/nr/c4nr03247k.
18. Kraus H., Soltamov V. A., Fuchs F., Simin D., Sperlich A., Baranov P. G., Astakhov G. V., Dyakonov V. Scientific Reports, 2014, vol. 4, 5303(8). DOI: 10.1038/srep05303 Available at: https://www.nature.com/articles/srep05303#supplementary-information
19. Zhou H., Lin Z., Guo H., Lin S., Sun Y., Xu Y. Journal of Semiconductors, 2017, vol. 38, no. 3, 033002. DOI: 10.1088/1674-4926/38/3/033002 Available at: http://iopscience.iop.org/article/10.1088/1674-4926/38/3/033002
20. Belenkov E. A., Agaljamova Je. N., Grishnjakov V. A. Physics of the Solid State 2012, vol. 54, no. 2, pp. 433. DOI https://doi.org/10.1134/S1063783412020072 Available at: https://link.springer.com/article/10.1134/S1063783412020072
21. Belenkov E. A., Agaljamova Je. N. Bulletin of the Chelyabinsk State University, Physics, 2009, no. 24 (162), 5, pp.13–21. (in Russian)
22. Agalyamova E. N., Belenkov E. A., Grishnyakova V. A. Bulletin of the Chelyabinsk State University, Physics, 2011, no. 15 (230), 10, pp. 15–24. (in Russian)
23. Kasper Y., Tuchin A., Bokova A., Bityutskaya L. J. of Phys., Conf. Series, 2016, vol. 741, no. 1, 012022(5). DOI: 10.1088/1742-6596/741/1/012022 Available at: http://iopscience.iop.org/article/10.1088/1742-6596/741/1/012022/meta
24. Bokova A. M., Tuchin A. V., Bitjuckaja L. A. Proceedings of High Schools. Electronics, 2015, 20, no. 1, pp. 5–9.
Published
2017-12-28
How to Cite
Tuchin, A. V., BityutskayaL. А., Kalashnikov, A. V., & Bormontov, E. N. (2017). QUANTUM-CHEMICAL STUDY OF 2D ALLOTROPES OF SILICON CARBIDE. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 19(4), 577-584. https://doi.org/10.17308/kcmf.2017.19/240
Section
Статьи