Heat wave dynamics in frozen water droplets with eosin molecules under the femtosecond excitation of a supercontinuum

  • Natalia A. Myslitskaya Immanuel Kant Baltic Federal University, 14 А. Nevskogo ul., Kaliningrad 237041, Russian Federation; Kaliningrad State Technical University, 1 Sovetsky prospekt, Kaliningrad 237022, Russian Federation https://orcid.org/0000-0001-6701-5328
  • Anna V. Tcibulnikova Immanuel Kant Baltic Federal University, 14 А. Nevskogo ul., Kaliningrad 237041, Russian Federation https://orcid.org/0000-0001-8578-0701
  • Ilia G. Samusev Immanuel Kant Baltic Federal University, 14 А. Nevskogo ul., Kaliningrad 237041, Russian Federation https://orcid.org/0000-0001-5026-7510
  • Vasiliy A. Slezhkin Immanuel Kant Baltic Federal University, 14 А. Nevskogo ul., Kaliningrad 237041, Russian Federation; Kaliningrad State Technical University, 1 Sovetsky prospekt, Kaliningrad 237022, Russian Federation https://orcid.org/0000-0002-2801-7029
  • Valeriy V. Bryukhanov Immanuel Kant Baltic Federal University, 14 А. Nevskogo ul., Kaliningrad 237041, Russian Federation https://orcid.org/0000-0003-4689-7207
Keywords: Supercontinuum, Femtosecond excitation, Water, piece of ice, Eosin fluorescence, Ablative silver nanoparticles, Surface plasmons, Two-photon excitation, Thermal optical non-linearity, Temperature gradient, Heat wave, Wave propagation velocity

Abstract

In this study, we considered thermal processes in liquid and frozen water droplets with added dye molecules and metal nanoparticles at the moment of supercontinuum generation. We studied optical non-linear processes in a water droplet with a diameter of 1.92 mm, cooled (+2 °C) and frozen to -17 °C, with eosin molecules and ablative silver nanoparticles upon femtosecond laser treatment.
When we exposed a cooled water droplet and a piece of ice containing eosin molecules and ablative silver nanoparticles to a femtosecond laser beam (l = 1030 nm), we recorded two-photon fluorescence, enhanced by plasmon processes. Also, supercontinuum generation took place, with a period of decay t = 0.02 s. The geometry of non-linear large -scale self-focusing (LLSS ~ 0.45–0.55 mm) was studied. The value of microscale self-focusing (LSSS ~ 0.1 mm) of SC radiation in the laser channel was determined experimentally. The study shows that the energy dissipation in the SC channel increases when the thermal non-linearity exceeds the electronic non-linearity. We modelled the thermal processes and determined the temperature
gradient of the heating of the frozen droplet exposed to a femtosecond pulse. Based on the experimental data, the heat wave propagation velocity was calculated to be n = 0.11 m/s.

Downloads

Download data is not yet available.

Author Biographies

Natalia A. Myslitskaya, Immanuel Kant Baltic Federal University, 14 А. Nevskogo ul., Kaliningrad 237041, Russian Federation; Kaliningrad State Technical University, 1 Sovetsky prospekt, Kaliningrad 237022, Russian Federation

PhD in Physics and
Mathematics, senior research fellow at the Research
& Education Centre “Fundamental and Applied
Photonics. Nanophotonics”, Institute of Physical and
Mathematical Sciences and Information Technologies,
Immanuel Kant Baltic Federal University, Kaliningrad,
Russian Federation; Associate Professor at the
Department of Physics, Kaliningrad State Technical
University, Kaliningrad, Russian Federation; e-mail:
myslitskaya@gmail.com

Anna V. Tcibulnikova, Immanuel Kant Baltic Federal University, 14 А. Nevskogo ul., Kaliningrad 237041, Russian Federation

PhD in Physics and
Mathematics, senior research fellow at the Research
& Education Centre “Fundamental and Applied
Photonics. Nanophotonics”, Institute of Physical and
Mathematical Sciences and Information Technologies,
Immanuel Kant Baltic Federal University, Kaliningrad,
Russian Federation; e-mail: anna.tsibulnikova@mail.ru

Ilia G. Samusev, Immanuel Kant Baltic Federal University, 14 А. Nevskogo ul., Kaliningrad 237041, Russian Federation

PhD in Physics and Mathematics,
head of the Research & Education Centre “Fundamental
and Applied Photonics. Nanophotonics”, Institute of
Physical and Mathematical Sciences and Information
Technologies, Immanuel Kant Baltic Federal University,
Kaliningrad, Russian Federation; e-mail: is.cranz@gmail.com

Vasiliy A. Slezhkin, Immanuel Kant Baltic Federal University, 14 А. Nevskogo ul., Kaliningrad 237041, Russian Federation; Kaliningrad State Technical University, 1 Sovetsky prospekt, Kaliningrad 237022, Russian Federation

PhD in Chemistry, senior
research fellow at the Research & Education Centre
“Fundamental and Applied Photonics. Nanophotonics”,
Institute of Physical and Mathematical Sciences and
Information Technologies, Immanuel Kant Baltic
Federal University, Kaliningrad, Russian Federation;
Associate Professor at the Department of Chemistry,
Kaliningrad State Technical University, Kaliningrad,
Russian Federation; e-mail: vslezhkin@mail.ru

Valeriy V. Bryukhanov, Immanuel Kant Baltic Federal University, 14 А. Nevskogo ul., Kaliningrad 237041, Russian Federation

DSc in Physics and
Mathematics, leading research fellow at the Research
& Education Centre “Fundamental and Applied
Photonics. Nanophotonics”, Institute of Physical and
Mathematical Sciences and Information Technologies,
Immanuel Kant Baltic Federal University, Kaliningrad,
Russian Federation; e-mail: bryukhanov_v.v@mail.ru

References

Alfano R. R., Shapiro S. L. Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett.1970;24(11): 584–587. https://doi.org/10.1103/PhysRevLett.24.584

Zheltikov A. M. Let there be white light: supercontinuum generation by ultrashort laser pulses. Physics-Uspekhi. 2006;49(6): 605. http://dx.doi.org/10.1070/PU2006v049n06ABEH005975

Couairon A., Mysyrowicz A. Femtosecond filamentation in transparent media. Physics Reports. 2007;441(2-4): 47–189. https://doi.org/10.1016/j.physrep.2006.12.005

Kandidov V. P., Shlemov S. A. Javlenie filamentacii moshhnyh femtosekundnyh lazernyh impul’sov i ego prakticheskie prilozhenija. [The phenomenon of filamentation of high-power femtosecond laser pulses and its practical applications] In: Panchenko V. Ja. (ed.) Glubokoe kanalirovanie i filamentacija moshhnogo lazernogo izluchenija v veshhestve [Deep channeling and filamentation of high-power laser radiation in matter]. Moscow, Interkontakt Nauka Publ.; 2009. p. 185–266. (In Russ.)

Chin S. L. Femtosecond Laser Filamentation. N.Y.: Springer; 2010. 130 p. https://doi.org/10.1007/978-1-4419-0688-5

Chekalin S. V., Kandidov V. P. From self-focusing light beams to femtosecond laser pulse ilamenCondensedtation. Physics-Uspekhi. 2013;56(2): 123-140. https://doi.org/10.3367/ufne.0183.201302b.0133

Apeksimov D. V., Bukin O. A., Bykova E. E., Gejnc Ju. Je., Golik S. S., Zemljanov Al. A., Zemljanov A. A., Il’in A. A., Kabanov A. M., Matvienko G. G., Oshlakov V. K., Sokolova E. B., Habibullin R. R. Interaction of GW laser pulses with water droplets. Prikladnaja Fizika. 2011;6: 13–21. Available at: http://applphys.orion-ir.ru/appl-11/11-6/PF-11-6-13.pdf (In Russ., abstract in Eng.)

Kudryashov S. I., Samokhvalov A. A., Ageev E. I., Veiko V. P. Ultrafast broadband nonlinear spectroscopy of a colloidal solution of gold nanoparticles. JETP Lett., 2019;109(5): 298–302. https://doi.org/10.1134/S0021364019050096

Hoppius J. S., Maragkaki S., Kanitz A., Gregorcic P., Gurevich E. L. Optimization of femtosecond laser processing in liquids. Applied Surface Science. 2019;467–468: 255–260. https://doi.org/10.1016/j.apsusc.2018.10.121

Liu W., Kosareva O., Golubtsov I.S., Iwasaki A., Becker A., Kandidov V. P., Chin S. L. Femtosecond laser pulse filamentation versus optical breakdown in H2O. Applied Physics B: Lasers and Optics. 2003;76(3): 215–229. https://doi.org/10.1007/s00340-002-1087-1

Driben R. , Husakou A. , Herrmann J. Supercontinuum generation in aqueous colloids containing silver nanoparticles. Optics Letters. 2009;34(14): 2132–2134. https://doi.org/10.1364/OL.34.002132

Sutherland R. L. Handbook of Nonlinear Optics. 2nd Edition. CRC Press; 2003. p. 337–499. https://doi.org/10.1201/9780203912539

Ahmanov S. A., Nikitin S. Ju. Fizicheskaja optika [Physical optics]. Moscow: Nauka Publ.; 2004. 656 p. (In Russ.)

Besprozvannyh V. G., Pervadchuk V. P. Nelinejnaja optika: ucheb. posobie [Nonlinear Optics: A Tutorial]. Perm’: Perm. gos. tehn. un-ta Publ.; 2011. 200 p. (In Russ.)

Zhai S., Huang L., Weng Z., Dai W. Parabolic two-step model and accurate numerical scheme for nanoscale heat conduction induced by ultrashortpulsed laser heating. Journal of Computational and Applied Mathematics. 2020;369: 112591. https://doi.org/10.1016/j.cam.2019.112591

Lee Smith W., Liu P., Bloembergen N. Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG: Nd laser. Physical Review A. 1977;15(6): 2396–2403. https://doi.org/10.1103/PhysRevA.15.2396

Myslitskaya N. A., Tcibul’nikova A. V., Slezhkin V. A., Samusev I. G., Antipov Ju. N., Derevshhikov V. V. Generation of supercontinuum in filamentation regime in a water droplet containing silver nanoparticles at low temperature. Optics and spectroscopy. 2020;128(12): 1954–1962. https://doi.org/10.1134/s0030400x20120978

Klimov V. V. Nanoplazmonika. Moscow: Fizmatlit Publ.; 2009. 480 p. (In Russ.)

Balykin V. I. and Melentiev P. N. Optics and spectroscopy of a single plasmonic nanostructure. Physics-Uspekhi. 2018;61(2): 133. https://doi. org/10.3367/UFNe.2017.06.038163

Myslitskaya N. A., Slezhkin V. A., Borkunov R. Y., Tsar’kov M. V., Samusev I. G., Bryukhanov V. V. Spectral and temperature dynamics of the processes inside aqueous droplets containing eosine molecules and silver nanoparticles upon laser excitation in the IR and visible Ranges. Russian Journal of Physical Chemistry A. 2019;93(8): 1559–1566. https://doi.org/10.1134 /S003602441908020X

Bespalov V. G., Kozlov S. A., Shpolyanskiy Yu. A., Walmsley I. A. Simplified field wave equations for the non-linear propagation of extremely short light pulses. Physical Review A. 2002;66: 013811. https://doi.org/10.1103/PhysRevA.66.013811

Rozanov N. N., Vysotina N. V., Shacev A. N., Desjatnikov A. S., Shadrivov I. V., Noskov R. E., Kivshar’ Ju. S. Discrete switching and dissipative solutions in the coherently excited nanostructures and metamaterials. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2012;4(80): 1–12. Available at: https://www.elibrary.ru/item.asp?id=17799659 (In Russ. abstract in Eng.)

Sizmin D. V. Nelinejnaja optika [Nonlinear optics]. Saratov: SarFTI Publ.; 2015. 146 p. (In Russ.)

Marburger J. H. Self-focusing: Theory. Progress in Quantum Electronics. 1975;4(1): 35–110. https://doi.org/10.1016/0079-6727(75)90003-8

Bеspalov V. I., Talanov V. I. O nitevidnoi strukture puchkov sveta v nelineinykh zhidkostyakh [On the filamentous structure of light beams in nonlinear liquids]. JETP Letters. 1966;3(12): 307–309. Available at: http://jetpletters.ru/cgi-bin/articles/download.cgi/782/article_12073.pdf (In Russ.)

Dmitriev V. G., Tarasov L. V. Prikladnaja nelinejnaja optika. 2nd ed. [Applied nonlinear optics]. Moscow: FIZMATLIT Publ.; 2004. 512 p. (In Russ.)

Shen Y. R. The Principles of Nonlinear Optics. New York: Wiley; 1984. 563 p.

Boyd R. W. Nonlinear optics. 3rd ed. Boston: Academic Press; 2007. 640 p.

Lykov A. V. Teorija teploprovodnosti [Heat conduction theory]. Moscow: Vysshaja shkola Publ.; 1966. 592 p. (In Russ.)

Tabiryan N. V., Luo W. Soret feedback in Тhermal diffusion of suspensions. Physical Review E. 1998;57(4): 4431–4440. https://doi.org/10.1103/PhysRevE.57.4431

Baffou G. Rigneault H. Femtosecond-pulsed optical heating of gold nanoparticles. Physical Review B. 2011;84: 035415-1-13. https://doi.org/10.1103/PhysRevB.84.035415

Warren S. G., Brandt R. E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. Journal of Geophysical Research. 2008;113(D14220). https://doi.org/10.1029/2007JD009744

Brown A. M., Sundararaman R., Narang P., Goddard III W. A., Atwater H. A. Ab initiophonon coupling and optical response of hot electrons in plasmonic metals. Physical Review B. 2016;94(7): 075120-1–075120-10. https://doi.org/10.1103/PhysRevB.94.075120

Kuhling H. Handbook of Physics. Moscow: Mir Publ.; 1982. 519 p. (in Russ.).

Libenson M. N., Jakovlev E. B., Shandybina G. D. Vzaimodejstvie lazernogo izluchenija s veshhestvom (silovaja optika). Chast’ II. Lazernyj nagrev i razrushenie materialov. Uchebnoe posobie [Interaction of laser radiation with matter (power optics). Part II. Laser heating and destruction of materials. Tutorial]. Vejko V. P. (ed.). Sankt Petersburg: NIU ITMO Publ.; 2014. 181 p. (In Russ.)

Johari G. P., Whalley E. he dielectric properties of ice Ih in the range 272–133 K. The Journal of Chemical Physics. 1981;75(3): 1333–1340. https://doi.org/10.1063/1.442139

Published
2021-06-04
How to Cite
Myslitskaya, N. A., Tcibulnikova, A. V., Samusev, I. G., Slezhkin, V. A., & Bryukhanov, V. V. (2021). Heat wave dynamics in frozen water droplets with eosin molecules under the femtosecond excitation of a supercontinuum. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(2), 260-272. https://doi.org/10.17308/kcmf.2021.23/3437
Section
Original articles