Heat wave dynamics in frozen water droplets with eosin molecules under the femtosecond excitation of a supercontinuum
Abstract
In this study, we considered thermal processes in liquid and frozen water droplets with added dye molecules and metal nanoparticles at the moment of supercontinuum generation. We studied optical non-linear processes in a water droplet with a diameter of 1.92 mm, cooled (+2 °C) and frozen to -17 °C, with eosin molecules and ablative silver nanoparticles upon femtosecond laser treatment.
When we exposed a cooled water droplet and a piece of ice containing eosin molecules and ablative silver nanoparticles to a femtosecond laser beam (l = 1030 nm), we recorded two-photon fluorescence, enhanced by plasmon processes. Also, supercontinuum generation took place, with a period of decay t = 0.02 s. The geometry of non-linear large -scale self-focusing (LLSS ~ 0.45–0.55 mm) was studied. The value of microscale self-focusing (LSSS ~ 0.1 mm) of SC radiation in the laser channel was determined experimentally. The study shows that the energy dissipation in the SC channel increases when the thermal non-linearity exceeds the electronic non-linearity. We modelled the thermal processes and determined the temperature
gradient of the heating of the frozen droplet exposed to a femtosecond pulse. Based on the experimental data, the heat wave propagation velocity was calculated to be n = 0.11 m/s.
Downloads
References
Alfano R. R., Shapiro S. L. Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett.1970;24(11): 584–587. https://doi.org/10.1103/PhysRevLett.24.584
Zheltikov A. M. Let there be white light: supercontinuum generation by ultrashort laser pulses. Physics-Uspekhi. 2006;49(6): 605. http://dx.doi.org/10.1070/PU2006v049n06ABEH005975
Couairon A., Mysyrowicz A. Femtosecond filamentation in transparent media. Physics Reports. 2007;441(2-4): 47–189. https://doi.org/10.1016/j.physrep.2006.12.005
Kandidov V. P., Shlemov S. A. Javlenie filamentacii moshhnyh femtosekundnyh lazernyh impul’sov i ego prakticheskie prilozhenija. [The phenomenon of filamentation of high-power femtosecond laser pulses and its practical applications] In: Panchenko V. Ja. (ed.) Glubokoe kanalirovanie i filamentacija moshhnogo lazernogo izluchenija v veshhestve [Deep channeling and filamentation of high-power laser radiation in matter]. Moscow, Interkontakt Nauka Publ.; 2009. p. 185–266. (In Russ.)
Chin S. L. Femtosecond Laser Filamentation. N.Y.: Springer; 2010. 130 p. https://doi.org/10.1007/978-1-4419-0688-5
Chekalin S. V., Kandidov V. P. From self-focusing light beams to femtosecond laser pulse ilamenCondensedtation. Physics-Uspekhi. 2013;56(2): 123-140. https://doi.org/10.3367/ufne.0183.201302b.0133
Apeksimov D. V., Bukin O. A., Bykova E. E., Gejnc Ju. Je., Golik S. S., Zemljanov Al. A., Zemljanov A. A., Il’in A. A., Kabanov A. M., Matvienko G. G., Oshlakov V. K., Sokolova E. B., Habibullin R. R. Interaction of GW laser pulses with water droplets. Prikladnaja Fizika. 2011;6: 13–21. Available at: http://applphys.orion-ir.ru/appl-11/11-6/PF-11-6-13.pdf (In Russ., abstract in Eng.)
Kudryashov S. I., Samokhvalov A. A., Ageev E. I., Veiko V. P. Ultrafast broadband nonlinear spectroscopy of a colloidal solution of gold nanoparticles. JETP Lett., 2019;109(5): 298–302. https://doi.org/10.1134/S0021364019050096
Hoppius J. S., Maragkaki S., Kanitz A., Gregorcic P., Gurevich E. L. Optimization of femtosecond laser processing in liquids. Applied Surface Science. 2019;467–468: 255–260. https://doi.org/10.1016/j.apsusc.2018.10.121
Liu W., Kosareva O., Golubtsov I.S., Iwasaki A., Becker A., Kandidov V. P., Chin S. L. Femtosecond laser pulse filamentation versus optical breakdown in H2O. Applied Physics B: Lasers and Optics. 2003;76(3): 215–229. https://doi.org/10.1007/s00340-002-1087-1
Driben R. , Husakou A. , Herrmann J. Supercontinuum generation in aqueous colloids containing silver nanoparticles. Optics Letters. 2009;34(14): 2132–2134. https://doi.org/10.1364/OL.34.002132
Sutherland R. L. Handbook of Nonlinear Optics. 2nd Edition. CRC Press; 2003. p. 337–499. https://doi.org/10.1201/9780203912539
Ahmanov S. A., Nikitin S. Ju. Fizicheskaja optika [Physical optics]. Moscow: Nauka Publ.; 2004. 656 p. (In Russ.)
Besprozvannyh V. G., Pervadchuk V. P. Nelinejnaja optika: ucheb. posobie [Nonlinear Optics: A Tutorial]. Perm’: Perm. gos. tehn. un-ta Publ.; 2011. 200 p. (In Russ.)
Zhai S., Huang L., Weng Z., Dai W. Parabolic two-step model and accurate numerical scheme for nanoscale heat conduction induced by ultrashortpulsed laser heating. Journal of Computational and Applied Mathematics. 2020;369: 112591. https://doi.org/10.1016/j.cam.2019.112591
Lee Smith W., Liu P., Bloembergen N. Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG: Nd laser. Physical Review A. 1977;15(6): 2396–2403. https://doi.org/10.1103/PhysRevA.15.2396
Myslitskaya N. A., Tcibul’nikova A. V., Slezhkin V. A., Samusev I. G., Antipov Ju. N., Derevshhikov V. V. Generation of supercontinuum in filamentation regime in a water droplet containing silver nanoparticles at low temperature. Optics and spectroscopy. 2020;128(12): 1954–1962. https://doi.org/10.1134/s0030400x20120978
Klimov V. V. Nanoplazmonika. Moscow: Fizmatlit Publ.; 2009. 480 p. (In Russ.)
Balykin V. I. and Melentiev P. N. Optics and spectroscopy of a single plasmonic nanostructure. Physics-Uspekhi. 2018;61(2): 133. https://doi. org/10.3367/UFNe.2017.06.038163
Myslitskaya N. A., Slezhkin V. A., Borkunov R. Y., Tsar’kov M. V., Samusev I. G., Bryukhanov V. V. Spectral and temperature dynamics of the processes inside aqueous droplets containing eosine molecules and silver nanoparticles upon laser excitation in the IR and visible Ranges. Russian Journal of Physical Chemistry A. 2019;93(8): 1559–1566. https://doi.org/10.1134 /S003602441908020X
Bespalov V. G., Kozlov S. A., Shpolyanskiy Yu. A., Walmsley I. A. Simplified field wave equations for the non-linear propagation of extremely short light pulses. Physical Review A. 2002;66: 013811. https://doi.org/10.1103/PhysRevA.66.013811
Rozanov N. N., Vysotina N. V., Shacev A. N., Desjatnikov A. S., Shadrivov I. V., Noskov R. E., Kivshar’ Ju. S. Discrete switching and dissipative solutions in the coherently excited nanostructures and metamaterials. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2012;4(80): 1–12. Available at: https://www.elibrary.ru/item.asp?id=17799659 (In Russ. abstract in Eng.)
Sizmin D. V. Nelinejnaja optika [Nonlinear optics]. Saratov: SarFTI Publ.; 2015. 146 p. (In Russ.)
Marburger J. H. Self-focusing: Theory. Progress in Quantum Electronics. 1975;4(1): 35–110. https://doi.org/10.1016/0079-6727(75)90003-8
Bеspalov V. I., Talanov V. I. O nitevidnoi strukture puchkov sveta v nelineinykh zhidkostyakh [On the filamentous structure of light beams in nonlinear liquids]. JETP Letters. 1966;3(12): 307–309. Available at: http://jetpletters.ru/cgi-bin/articles/download.cgi/782/article_12073.pdf (In Russ.)
Dmitriev V. G., Tarasov L. V. Prikladnaja nelinejnaja optika. 2nd ed. [Applied nonlinear optics]. Moscow: FIZMATLIT Publ.; 2004. 512 p. (In Russ.)
Shen Y. R. The Principles of Nonlinear Optics. New York: Wiley; 1984. 563 p.
Boyd R. W. Nonlinear optics. 3rd ed. Boston: Academic Press; 2007. 640 p.
Lykov A. V. Teorija teploprovodnosti [Heat conduction theory]. Moscow: Vysshaja shkola Publ.; 1966. 592 p. (In Russ.)
Tabiryan N. V., Luo W. Soret feedback in Тhermal diffusion of suspensions. Physical Review E. 1998;57(4): 4431–4440. https://doi.org/10.1103/PhysRevE.57.4431
Baffou G. Rigneault H. Femtosecond-pulsed optical heating of gold nanoparticles. Physical Review B. 2011;84: 035415-1-13. https://doi.org/10.1103/PhysRevB.84.035415
Warren S. G., Brandt R. E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. Journal of Geophysical Research. 2008;113(D14220). https://doi.org/10.1029/2007JD009744
Brown A. M., Sundararaman R., Narang P., Goddard III W. A., Atwater H. A. Ab initiophonon coupling and optical response of hot electrons in plasmonic metals. Physical Review B. 2016;94(7): 075120-1–075120-10. https://doi.org/10.1103/PhysRevB.94.075120
Kuhling H. Handbook of Physics. Moscow: Mir Publ.; 1982. 519 p. (in Russ.).
Libenson M. N., Jakovlev E. B., Shandybina G. D. Vzaimodejstvie lazernogo izluchenija s veshhestvom (silovaja optika). Chast’ II. Lazernyj nagrev i razrushenie materialov. Uchebnoe posobie [Interaction of laser radiation with matter (power optics). Part II. Laser heating and destruction of materials. Tutorial]. Vejko V. P. (ed.). Sankt Petersburg: NIU ITMO Publ.; 2014. 181 p. (In Russ.)
Johari G. P., Whalley E. he dielectric properties of ice Ih in the range 272–133 K. The Journal of Chemical Physics. 1981;75(3): 1333–1340. https://doi.org/10.1063/1.442139
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.