Nanoscale semiconductor and dielectric films and magnetic nanocrystals – new directions of development of the scientific school of Ya. A. Ugai “Solid state chemistry and semiconductors”. Review
Abstract
New directions of development of the scientific school of Yakov Aleksandrovich Ugai “Solid state chemistry and semiconductors” were considered for the direction “Study of semiconductors and nanostructured functional films based on them”, supervised by I. Ya. Mittova. The study of students and followers of the scientific school of Ya. A. Ugai cover materials science topics in the field of solid-state chemistry and inorganic and physical chemistry. At the present stage of research, the emphasis is being placed precisely on nanoscale objects, since in these objects the main mechanisms of modern solid-state chemistry are most clearly revealed: the methods of synthesis - composition - structure (degree of dispersion) - properties. Under the guidance of Professor I. Ya. Mittova DSc (Chem.), research in two key areas is conducted:
“Nanoscale semiconductor and dielectric films” and “Doped and undoped nanocrystalline ferrites”. In the first area, the problem of creating high-quality semiconductor and dielectric nanoscale films on AIIIBV by the effect reasonably selected chemostimulators on the process of thermal oxidation of semiconductors and/or directed modification of the composition and properties of the films. They present the specific results achieved to date, reflecting the positive effect of chemostimulators and modifiers on the rate of formation of dielectric and semiconductor films of the nanoscale thickness range and their functional characteristics, which are promising for practical applications.
Nanomaterials based on yttrium and lanthanum orthoferrites with a perovskite structure have unique magnetic, optical, and catalytic properties. The use of various approaches to their synthesis and doping allowing to control the structure and properties in a wide range. In the field of magnetic nanocrystals under the supervision of Prof. I. Ya. Mittova studies of the effect of a doping impurity on the composition, structure, and properties of nanoparticles of yttrium and lanthanum orthoferrites by replacing the Y(La)3+ and Fe3+ cations are carried out. In the Socialist Republic of Vietnam one of the talented students of Prof. I. Ya. Mittova, Nguyen Anh Tien, performs studies in this area. To date, new methods for the synthesis of
nanocrystals of doped and undoped ferrites, including ferrites of neodymium, praseodymium, holmium, etc. have been developed.
Downloads
References
Sidorkin A. S. Vedushchie nauchnye shkoly [Leading scientific schools]. Voronezh: Voronezhskii gosudarstvennyi universitet Publ.; 2001. 172 p. (In Russ.)
Mikhailova M. P., Moiseev K. D., Yakovlev Y. P. Discovery of III–V semiconductors: Physical properties and application semiconductors. Semiconductors. 2019;53(3): 273–290. https://doi.org/10.1134/S1063782619030126
Wilmsen C. W. Oxide layers on III—V compound semiconductors. Thin Solid Films. 1976;39(1-2-3): 105-117. https://doi.org/10.1016/0040-6090(76)90628-3
Oktyabrsky S., Ye P. Fundamentals of III-V Semiconductor MOSFETs. Springer Science LCC; 2013. 447 p.
Moorthy S. B. K. Thin film structures in energy applications. Springer; 2015. 292 p.
Bolkhovityanov Yu. B., Pchelyakov O. P. GaAs epitaxy on Si substrates: modern status of research and engineering. Physics-Uspekhi. 2008;51: 437–456. http://dx.doi.org/10.1070/PU2008v051n05ABEH006529
Engström O. The MOS System. Cambridge University Press: 2014. 216 p.
Aderstedt E., Medugorac I., Lundgren P. Highgain MOS tunnel emitter transistors. Solid-State Electronics. 2002;46(4): 497–500. https://doi.org/10.1016/S0038-1101(01)00298-2
Chistokhin I. B., Zhuravlev K. S. SVChfotodetektory dlya analogovoi optovolokonnoi svyazi [Microwave photodetectors for analog fiber optic communication]. Uspekhi Prikladnoi Fiziki. 2015;3(1): 85–94. Available at: https://advance.orion-ir.ru/UPF-15/1/UPF-3-1-85.pdf (In Russ.)
Li Sheng S. Semiconductor physical electronics. Second Edition. Springer-Verlag New York; 2006. 708 p.
Arbiol J., Xiong Q. Semiconductor nanowires: materials, synthesis, characterization and applications. Elsevier Ltd.; 2015. 554 p.
Bachhofer H., Reisinger H., Bertagnolli E., Philipsborn von H. Transient conduction in multidielectric silicon–oxide–nitride–oxide semiconductor structures. Journal of Applied Physics. 2011; 89 (5): 27 91-2800. https://doi.org/10.1063/1.1343892
Ahmad S. R., Cartwright M. Laser ignition of energetic materials. John Wiley & Sons Ltd.; 2015. 425 p.
Ünlü H., Horing N. J. M., Dabowski J. Lowdimensional and nanostructured materials and devices. Springer Science LCC; 2015. 674 p.
Biksei M. P., Dobrovol’skii Yu. G., Shabashkevich B. G. Fotopriemnik ul’trafioletovogo izlucheniya na osnove fosfida galliya [Photodetector of ultraviolet radiation based on gallium phosphide]. Prikladnaya Fizika. 2005;4: 97–100. Available at: https://applphys. orion-ir.ru/appl-05/05-4/PF-05-4-97.pdf (In Russ.)
Dobrovol’skii Yu. G. Fotodiod na osnove GaP s povyshennoi chuvstvitel’nost’yu v korotkovolnovoi oblasti UF-spektra [GaP based photodiode with increased sensitivity in the short wavelength region of the UV spectrum]. Tekhnologiya i konstruirovanie v elektronnoi apparature. 2012;5: 31–34. Available at: http://dspace.nbuv.gov.ua/bitstream/han-dle/123456789/51709/07-Dobrovolskii.pdf?sequence=1 (In Russ.)
Sobolev M. M., Nikitin V. G., High-temperature diode formed by epitaxial GaP layers Technical Physics Letters. 1998; 24 (5): 329–331. https://doi.org/10.1134/1.1262110
Aleshkin V. Ya., Dubinov A. A., Afonenko A. A. Oscillations at a difference frequency in the middle and far infrareds in GaP semiconductor waveguides. Technical Physics. 2006;51(9): 1207–1209. https://doi.org/10.1134/S1063784206090167
Purica M., Budianu E., Rusu E. Heterojunction with ZnO polycrystalline thin films for optoelectronic devices applications. Microelectronic Engineering. 2000;51–52: 425–431. https://doi.org/10.1016/S0167-9317(99)00492-X
Bang K. H., Hwang D. K., Park M. C., Ko Y. D., Yun I., Myoung J. M. Formation of p-type ZnO film on InP substrate by phosphor doping. Applied Surface Science. 2003;210(3–4): 177–182.
https://doi.org/10.1016/S0169-4332(03)00151-X
Thilakan P., Kumar J. Reactive thermal deposition of indium oxide and tin-doped indium oxide thin films on InP substrates. Thin Solid Films. 1997;292(1-2): 50–54. https://doi.org/10.1016/S0040-6090(96)08943-2
Kim T. W., Lee D. U., Yoon Y. S. Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. Journal of Applied Physics. 2000;88: 3759. https://doi.org/10.1063/1.1288021
Lee D. J., Park C. S., Lee C. J., Song J. D., Koo H. C., Yoon C. S., Yoon I. T., Kim H. S., Kang T. W., Shon Y. Enhanced ferromagnetism by preventing antiferromagnetic MnO2 in InP:Be/Mn/InP:Be triple layers fabricated using molecular beam epitaxy. Current Applied Physics. 2014;14(4): 558–562. https://doi.org/10.1016/j.cap.2014.01.017
Belysheva T. V, Bogovtseva L. P., Gutman E. E. Primenenie metallooksidnykh poluprovodnikovykh eterosistem
dlya gazovogo analiza [Application of metal oxide semiconductor heterosystems for gas analysis]. Mezhdunarodnyi nauchnyi zhurnal al’ternativnaya energetika i ekologiya. 2003;S1: 128. Available at: https://www.elibrary.ru/item.asp?id=12879078
Rumyanceva M. N., Safonova O. V., Bulova M. N., Ryabova L. I., Gas’kov A. M. Gazochuvstvitel’nye materialy na osnove dioksidov olova [Gas sensitive materials based on tin dioxides]. Sensor. 2003;2: 8–33. (In Russ.)
Rembeza S. I., Svistova T. V., Rembeza E. S., Borsyakova O. I. The microstructure and physical properties of thin SnO2 films. Semiconductors. 2001;35: 762–765. https://doi.org/10.1134/1.1385709
Lekshmy S. S. , Joy K. Structural and optoelectronic properties of indium doped SnO2 thin films deposited by sol gel technique. Journal of Materials Science: Materials in Electronics. 2014;25(4): 1664–1672. https://doi.org/10.1007/s10854-014-1781-x
Lugin G., Zharskii I. M. Ispol’zovanie termoelektricheskikh effektov tonkikh plenok oksidov indiya i olova dlya sozdaniya gazovykh sensorov [The use of thermoelectric effects of thin films of indium and tin oxides to create gas sensors]. Mikrosistemnaya Tekhnika. 2001;10: 10–14. Available at: https://www.elibrary.ru/item.asp?id=8970862 (In Russ.)
Ivanovskaya M., Bogdanov P., Faglia G., Sberveglieri G. Properties of Thin Film and Ceramic Sensors fot the Detection of CO and NО2. Proc. of Int. Metting “Eurosensors XIII”. 1999. p. 145–148.
Belysheva T. V., Bogovtseva L. P., Gutman E. E. In2O3 films modified with gold as selective sensors of CO in air. Russian Journal of Applied Chemistry. 2000;73(12): 2070–2073.
Miyata T., Hikosaka T., Minami T. High sensitivity chlorine gas sensors using multicomponent transparent conducting oxide thin films. Sensors and Actuators. 2000;69(1-2): 16–21. https://doi.org/10.1016/S0925-4005(00)00301-4
Miyata T., Minami T., Shimokawa K., Kakumu T., Ishii M. New materials consisting of multicomponent oxides for thin film gas sensors. Journal of the Electrochemical Society. 1997;144(7): 2432–2436. https://doi.org/10.1117/12.352810
Petrov V. V., Nazarova T. N., Kopylova N. F., Zabluda O. V., Kiselev I., Bruns M. Issledovanie fizikoh imicheskihi elektrofizicheskihs vo jstv, gazochuvstvitel’nyh harakteristik nanokompozitnyh plenok sostava SiO2-SnOx-CuOy [Investigation of physicochemical and electrophysical properties, gassensitive characteristics of nanocomposite films of the composition SiO2-SnOx-CuOy]. Nano- i mikrosistemnaya tekhnika. 2010;8: 15–21. Available at: https://www.elibrary.ru/item.asp?id=15260225 (In Russ.)
Mingqing Y., Junhui H., Xiaochun H., Chunxiao Y., Zhenxing C., Yingqiang Z., Guomin Z. Copper oxide nanoparticle sensors for hydrogen cyanide detection: Unprecedented selectivity and sensitivity. Sensors and Actuators B. 2011;155(2): 692–698. https://doi.org/10.1016/j.snb.2011.01.031
Satyendra S., Yadava B. C., Rajiv P., Bharat B., Jae R. Synthesis of nanorod sand mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Applied Surface Science. 2011;257(24): 10763–10770. http://dx.doi.org/10.1016/j.apsusc.2011.07.094
Mittova I. Ya. Influence of the physicochemical nature of chemical stimulators and the way they are introduced into a system on the mechanism of the thermal oxidation of GaAs and InP. Inorganic Materials.
;50(9): 874–881. https://doi.org/10.1134/S0020168514090088
Tominа E. V., Mittova, I. Y., Zelenina, L. S. Thermal oxidation as a method of formation of nanoscale functional films on AIIIBV semiconductors: influence of deposited metal layers. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(1): 6–24. https://doi.org/10.17308/kcmf.2018.20/472 (In Russ., abstract in Eng.)
Tominа E. V., Mittova I. Ya., Sladkopevtsev B. V., Kostryukov V. F., Samsonov A. A., Tretyakov N. N. Thermal oxidation as a method of formation of nanoscale functional films on AIIIBV semiconductors: chemostimulated influence of metal oxides: overview. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(2): 184–203. https://doi.org/10.17308/kcmf.2018.20/522 (In Russ., abstract in Eng.)
Kostryukov V. F., Mittova I. Y., Tominа E. V., Sladkopevtsev B. V., Parshina A. S., Balasheva D. S. Nonlinear effects of oxides of p- and d-elements’ coactions in formation of thin films on the GaAs and InP surfaces overview. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(4): 506–536. https://doi.org/10.17308/kcmf.2018.20/625 (In Russ., abstract in Eng.)
Mittova I. Ya., Tomina E. V., Golovenko N. A., Agapov B. L. Formation of thermal oxide layers on InP in the presence of SbCl3 in the gas phase. Inorganic Materials. 1993;29(5): 514–516. Available at: https://www.elibrary.ru/item.asp?id=27651233
Mittova I. Ya., Pukhova V. V., Klement’eva I. F., Semenov V. N. , Kashkarov V. M. Poluchenie termicheskim kisleniem struktur GaAs/Bi2S3 i svoistva dielektricheskikh plenok na GaAs[Thermal oxidation of GaAs/Bi2S3 structures and properties of dielectric layers on GaAs]. Izvestiya Akademii nauk SSSR. Neorganicheskie Materialy. 1988;24(9): 1431–1434. Available at: https://w w w.elibrar y.ru/item.asp?id=27454116
Kostryukov V.F., Mittova I. Ya., Sladkopevtsev B. V., Parshina A. S., Balasheva D. S. The role of BiPO4 introduced through the gas phase in the process of creating thin films on the surface of InP. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(2): 215–224. https://doi.org/10.17308/kcmf.2019.21/759 (In Russ., abstract in Eng.)
Sladkopevtsev B. V., Tomina E. V., Mittova I. Ya., Dontsov A. I., Pelipenko D. I. On the thermal oxidation of VxOy–InP heterostructures formed by the centrifugation of vanadium(V) oxide gel. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2016;10(2): 335–340. https://doi.org/10.1134/S102745101602018X
Sladkopevtsev B. V., Mittova I. Ya., Tomina E. V., Burtseva N. A. Growth of vanadium oxide films on InP under mild conditions and thermal oxidation of the resultant structures. Inorganic Materials. 2012;48(2): 161–168. https://doi.org/10.1134/S0020168512020173
Mittova I. Ya., Tretyakov N. N., Kostryukov V. F., Sladkopevtsev B. V. Thermal oxidation of GaAs under action of V2O5–MnO2 oxide chemostimulating mixture with particles size of 50–150 μm. Russian Journal of General Chemistry. 2016;86(5): 995–1000. https://doi.org/10.1134/S1070363216050017
Tret’yakov N. N., Mittova I. Ya., Sladkopevtsev B. V., Samsonov A. A., Andreenko S. Yu. Vliyanie magnetronno napylennogo sloya MnO2 na kinetiku termooksidirovaniya InP, sostav i morfologiyu sintezirovannykh plenok [Influence of a magnetron-deposited MnO2 layer on the kinetics of thermal oxidation of InP, composition and morphology of the synthesized films]. Neorganicheskie materialy. 2017;53(1): 41–48. https://doi.org/10.7868/S0002337X17010171 (In Russ.)
Tarasova O. S., Dontsov A. I., Sladkopevtsev B. V., Mittova I. Ya. The effect of sulphur vapour treatment on the speed of InP thermal oxidation, composition, surface morphology, and properties of films. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2019;21(2): 296–305. https://doi.org/10.17308/kcmf.2019.21/767 (In Russ., abstract in Eng.)
Mittova I. Ya., Sladkopevtsev B. V., Dontsov A. I., Syrov Yu. V., Kovaleva A. S., Tarasova O. S. Thermal oxidation of a single-crystal GaAs surface treated in sulfur vapor. Inorganic Materials. 2021;57(7): 663–668. https://doi.org/10.1134/S002016852107013X
Mittova I. Y., Sladkopevtsev B. V., Ilyasova N. A., Tomina E. V., Dontsov A. I., Tarasova O. S. The effect of certain complex chemostimulators and modifiers on InP thermal oxidation. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2020;22(2): 245-256. https://doi.org/10.17308/kcmf.2020.22/2851
Tomina E. V., Sladkopevtsev B. V., Dontsov A. I., Perfileva L. I., Mittova I. Y. Influence of nanoscale layers of the Mn3(P0.1V0.9O4)2 chemostimulatormodifier on the process of thermal oxidation of GaAs, its composition, and morphology of the resulting films. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2020;22(1): 116–123. https://doi.org/10.17308/kcmf.2020.22/2535
Mittova I. Y., Tomina E. V., Sladkopevtsev B. V., Dontsov A. I. Effect of different types of annealing on the thermal oxidation of VxOy/InP structures formed by the deposition of vanadium(V) oxide gel on the phase composition and morphology of films. Journal of Surface Investigation. X-ray, Synchrotron and Neutron
Techniques. 2014;8: 941–949. https://doi.org/10.1134/S1027451014050140
Mittova I. Ya., Tomina E. V., Lapenko A. A., Khorokhordina A. O. Solid-state reactions during thermal oxidation of vanadium-modified GaAs surfaces. Inorganic Materials. 2004;40(5): 441–444. https://doi.org/10.1023/B:INMA.0000027588.78546.af
Mittova I. Ya., Tomina E. V., Lapenko A. A., Sladkopevtsev B. V. Kataliticheskoe deistvie vanadiya i ego oksida (V) v protsessakh oksidirovaniya poluprovodnikov AIIIBV. [Catalytic action of vanadium and its oxide (V) in the processes of oxidation of AIIIBV semiconductors]. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(2): 116–138. Available at: https://www.elibrary.ru/item.asp?id=17881315 (In Russ.)
Ievlev, V. M., Mittova, I. Y., Samsonov, A. A., Tomina E. V., Kashkarov V. M. Catalytic effect of a nanolayer of the (V2O5 + PbO) composite in the thermal oxidation of InP crystals. Doklady Chemistry. 2007;417: 277–281. https://doi.org/10.1134/S0012500807120014
Mittova I. Y., Sladkopevtsev B. V., Samsonov A. A., Tomina E. V., Andreenko S. Y., Kostenko P. V. Growth and properties of nanofilms produced by the thermal oxidation of MnO2/InP under the effect of Mn3(PO4)2. Inorganic Materials. 2019;55(9): 915–919 https://doi.org/10.1134/S0020168519090073
Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F. Nonlinear effect of the joint action of activators on thermal oxidation of gallium arsenide. Doklady Physical Chemistry. 1996;349(4-6): 196–198. Available at: https://www.elibrary.ru/item.asp?id=13233187
Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F., Kuznetsov N. T. Alternating nonlinearity of the joint activating effect of binary mixtures of p-element oxides on the chemically activated thermal GаAs oxidation. Doklady Chemistry. 2001;378(4-6): 165-167. https://doi.org/10.1023/A:1019238812687
Mittova I. Ya., Pshestanchik V. R., Pinyaeva O. A., Kostryukov V. F., Skorokhodova S. M. Nonadditive oxides influence in (CrO3-PbO) and (CrO3-V2O5) compositions as activators of thermal oxidation of gallium arsenide. Doklady Chemistry. 2002;385(4-6): 212–214. https://doi.org/10.1023/A:1019998719921
Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F., Donkareva I. A., Saratova A. Yu. Chemostimulated GaAs thermal oxidation under the joint action of manganese (IV) oxide with lead (II) oxide and vanadium (V) oxide. Russian Journal of Inorganic Chemistry. 2004;49(7) 991–994. Available at: https://elibrary.ru/item.asp?id=13464912
Mittova I. Ya., Kostryukov V. F., Donkareva I. A., Pshestanchik V. R., Lopatin S. I., Saratova A. Yu. Nonlinear effects of MnO + PbO and MnO + V2O5 compositions on GaAs thermal oxidation. Russian Journal of Inorganic Chemistry. 2005;50(6): 869–873. Available at: https://elibrary.ru/item.asp?id=13487639
Mittova I. Ya., Pshestanchik V. R., Kuznetsova I. V., Kostryukov V. F., Skorokhodova S. M., Medvedeva K. M. Vliyanie razmera chastits aktivatorov na protsess termooksidirovaniya GaAs pod vozdeistviem kompozitsii PbO + V2O5 [Influence of the particle size of activators on the process of thermal oxidation of GaAs under the influence of PbO + V2O5 compositions]. Zhurnal neorganicheskoi khimii. 2005;50(10): 1603–1606. Available at: ttps://elibrary.ru/item.asp?id=9153646 (In Russ.)
Mittova I. Ya., Kostryukov V. F. GaAs thermal oxidation activated by the coaction of p-block oxides. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(3): 417–426. Available at: http://www.mathnet.ru/links/8364620026a0f40f5d8a284be0ba04bf/nano872.pdf
Tret’yakov N. N., Mittova I. Ya., Kozik V. V., Sladkopevtsev B. V., Kostryukov V. F., Studenikina Yu. I. Opredelenie tolshchiny i fazovogo sostava plenok, sintezirovannykh khemostimulirovannym termooksidirovaniem InP pod vozdeistviem kompozitsii oksidov V2O5+MnO2 raznogo sostava [Determination of the thickness and phase composition of films synthesized by chemically stimulated thermal oxidation of InP under the influence of a composition of V2O5 + MnO2 oxides of different compositions]. Izvestiya vysshikh uchebnykh zavedenii. Fizika.
;57(7-2): 186–191. Available at: https://elibrary.ru/item.asp?id=23184836 (In Russ.)
Mittova I. Y., Tretyakov N. N., Kostryukov V. F., Sladkopevtsev B. V. Combined inf luence of chemostimulator oxides V2O5 and MnO2 introduced via the gas phase on InP thermal oxidation. Russian Journal of General Chemistry. 2015;85(4): 796–801. https://doi.org/10.1134/S1070363215040040
Mittova I. Ya., Kostryukov V. F., Donkareva I. A., Penskoi P. K., Pinyaeva O. A., Pshestanchik V. R. MnO + MnO2 mixture as a nonadditive activator of GaAs thermal oxidation. Russian Journal of General Chemistry. 2005;50(1): 15–19. Available at: https://elibrary.ru/item.asp?id=13497054
Losev V. N., Kudrina Yu. V., Trofimchuk A. K., Komozin P. N. Sorption of ruthenium (III) and ruthenium (IV) on silica gels chemically modified with mercapto and disulfide groups. Russian Journal of Inorganic Chemistry. 2005;50(4): 577–581. Available at: https://elibrary.ru/item.asp?id=13481209
Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F., Donkareva I. A. Prostranstvennaya lokalizatsiya vzaimodeistvii mezhdu soedineniyami-aktivatorami pri khemostimulirovannom termooksidirovanii GaAs [Space localisation of linking interactions between activating compounds at the course of chemically stimulated GaAs thermal oxidation]. Doklady akademii nauk. 2002;386(4): 499–501. Available at: https://elibrary.ru/item.asp?id=44462420 (In Russ.)
Mittova I. Ya., Pshestanchik V. R., Kostryukov V. F., Donkareva I. A. Mutual effect of activators on chemostimulated GaAs thermal oxidation with spatially separated coupling stages. Russian Journal of Inorganic Chemistry. 2003;48(4): 480–482. Available at: https://elibrary.ru/item.asp?id=13436411
Kostryukov V. F., Pshestanchik V. R., Donkareva I. A., Agapov B. L., Mittova I. Ya., Lopatin S. I. Role of solid- and gas-phase interactions in the coaction of the oxides in MnO2 + PbO and MnO2 + V2O5 compositions activating the thermal oxidation of GaAs. Russian Journal of Inorganic Chemistry. 2007;52(10): 1498–1502. https://doi.org/10.1134/S0036023607100038
Mittova I. Ya., Kostryukov V. F., Pshestanchik V. R., Donkareva I. A., Agapov B. L. Contribution from the solid-phase interactions of activating oxides to their nonlinear joint effect on the thermal oxidation of GaAs. Russian Journal of Inorganic Chemistry. 2008;53(7): 1018–1023. https://doi.org/10.1134/S0036023608070085
Kostryukov V. F., Donkareva I. A., Pshestanchik V. R., Agapov B. L., Mittova I. Ya., Lopatin S. I. GaAs thermal oxidation with participation of spatially separated activator oxides (MnO + PbO and MnO + V2O5). Russian Journal of Inorganic Chemistry. 2008;53(8): 1182–1186. https://doi.org/10.1134/S0036023608080056
Mittova I. Ya., Lopatin S. I., Pshestanchik V. R., Kostryukov V. F., Sergeeva A. V., Penskoi P. K. Rol’ inertnogo komponenta Ga2O3 v kompozitsii s oksidomaktivatorom Sb2O3 v protsesse khemostimulirovannogo okisleniya GaAs [role of an inert component Ga2O3 in the composition with the activator oxide Sb2O3 in chemostimulated GaAs oxidation]. Zhurnal neorganicheskoi khimii. 2005;50(10): 1599–1602. Available at: https://elibrary.ru/item.asp?id=9153645 (In Russ.)
Penskoi P. K., Kostryukov V. F., Pshestanchik V. R., Mittova I. Ya. Effekt sovmestnogo vozdeistviya kompozitsii khemostimulyatorov (Sb2O3, Bi2O3, MnO2) s inertnym komponentom (Al2O3) v protsesse termooksidirovaniya arsenida galliya [Effect of the combined effect of chemostimulant compositions (Sb2O3, Bi2O3, MnO2) with an inert component (Al2O3) during thermal oxidation of gallium arsenide]. Doklady akademii nauk. 2007;414(6): 765–767. Available at: https://elibrary.ru/item.asp?id=9533571 (In Russ.)
Penskoi P. K., Pshestanchik V. R., Kostryukov V. F., Agapov B. V., Mittova I. Ya., Kuznetsova I. V. Nonadditive linearity in the chemostimulating effect of activator oxides + dlient compositions on GaAs thermal oxidation. Russian Journal of Inorganic Chemistry. 2008;53(2): 186–191. https://doi.org/10.1007/s11502-008-2006-0
Penskoi P. K., Mittova I. Ya., Kostryukov V. F., Kononova E. Yu., Reutova E. A. Vliyanie inertnogo komponenta A12O3 v kompozitsiyakh s oksidamiaktivatorami (Sb2O3, Bi2O3, MnO2) na protsess termooksidirovaniya GaAs [The influence of inert component Al2O3 in mixtures with oxide activators (Sb2O3, Bi2O3, MnO2) on the process of thermal oxidation of GaAs surface]. Kondensirovannye sredy i mezhfaznye granitsy. 2008;10(3): 236–243. Available at: https://elibrary.ru/item.asp?id=11688570 (In Russ.)
Penskoi P. K., Kostryukov V. F., Pshestanchik V. R., Mittova I. Ya., Kutsev S. V., Kuznetsova I. V. Effect of inert components (Y2O3, Al2O3, and Ga2O3) on the chemistimulating effect of the Sb2O3 activator of GaAs thermal oxidation. Russian Journal of Inorganic Chemistry. 2009;54(10): 1564–1570. https://doi.org/10.1134/S0036023609100118
Kozhevnikova T. V., Penskoi P. K., Kostryukov V. F., Mittova I. Y., Kuznetsova I. V., Kutsev S. V. Role of an inert component in compositions with manganese (II) and manganese (IV) oxides in studying nonlinear effects in gaas thermal oxidation. Russian Journal of Inorganic Chemistry. 2010;55(12): 1857–1862. https://doi.org/10.1134/S0036023610120077
Kozhevnikova T. V., Penskoi P. K., Kostryukov V. F., Mittova I. Ya., Agapov B. L., Kuznetsova I. V., Kutsev S. V. Termicheskoe okislenie GaAs pod vozdeistviem kompozitsii Sb2O3, Bi2O3, MnO, MnO2 i V2O5 s oksidami alyuminiya i ittriya [Thermal oxidation of gaas under influence of compositions of Sb2O3, Bi2O3, MnO, MnO2 and V2O5 with oxides of aluminium and yttrium]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed matter and Interphases. 2010;12(3): 212–225. Available at: https://elibrary.ru/item.asp?id=15574165 (In Russ.)
Penskoi P. K., Salieva E. K., Kostryukov V. F., Rembeza S. I., Mittova I. Ya. Gazochuvstvitel’nost’ slabolegirovannykh sloev, poluchennykh okisleniem GaAs v prisutstvii PbO i Bi2O3 [Gas-sensitivity of the light-alloyed layers. Obtained by the oxidation of GaAs in the presence of PbO and Bi2O3]. Vestnik VGU Seriya
Khimiya. Biologiya. Farmatsiya. 2008;1: 26–31.Available at: https://elibrary.ru/item.asp?id=11615172 (In Russ.)
Kostryukov V. F., Mittova I. Ya. Ammonia response of thin films grown on GaAs using PbO + Bi2O3 mixtures. Inorganic Materials. 2015;51(5): 425– 429. https://doi.org/10.1134/S0020168515040056
Kostryukov V. F., Mittova I. Ya., Dimitrenko A. A. Chemically stimulated synthesis of gas-sensing films on the surface of GaAs. Inorganic Materials. 2017;53(5): 451–456. https://doi.org/10.1134/S0020168517050132
Kostryukov V. F., Mittova I. Ya., Ali Saud Gassensing properties of thin films grown on the surface of InP single crystals by thermal oxidation. Inorganic Materials. 2020;56(1): 66–71. https://doi.org/10.1134/S0020168520010070
Kostryukov V. F., Mittova I. Ya. Method for precision doping of thin films on gallium arsenide surface: Patent No 2538415 RF. Claim. 17.07.2013. Publ. 10.01.2015. Byul. №2013133382/28 1.
Kostryukov V.F., Mittova I. Ya., Sladkopevtsev B. V. Method of precision doping thin films on InP surface: Patent No 2632261 RF. Claim. 17.12.2015. Publ. 03.10.2017. Byul. №28.
Sladkopevtsev B. V., Tomina E. V., Mittova I. Ya., Tretyakov N. N. Method of creating nano-sized nanostructured oxide films on InP with application of vanadium pentaxide gel: Patent No 2550316 RF. Claim. 30.12.2013. Publ. 10.05.2015. Byul. № 13
Tomina E. V., Sladkopevtsev B. V., Mittova I. Ya., Zelenina L. S., Dontsov A. I., Tretyakov N. N., Gudkova Yu. N., Belashkova Yu. A. Effect of surface V2O5 nanolayers on the thermal oxidation kinetics of GaAs and the composition and morphology of resulting films. Inorganic Materials. 2015;51(11): 1138–1142. https://doi.org/10.1134/S0020168515110126
Mittova I. Y., Tomina E. V., Lapenko A. A., Sladkopevtsev B. V. Synthesis and catalytic performance of V2O5 nanoislands produced on the surface of InP crystals by electroexplosion. Inorganic Materials. 2010;46(4): 383–388. https://doi.org/10.1134/S0020168510040114
Mittova I. Ya., Tomina E. V., Tret’yakov N. N., Sladkopevtsev B. V. Zavisimost’ mekhanizma khemostimuliruyushchego deistviya V2O5 ot sposoba vvedeniya ego v sistemu pri termooksidirovanii InP
[Dependence of the mechanism of the chemostimulating action of V2O5 on the method of its introduction into
the system during thermal oxidation of InP.]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2013;15(3): 305–311.Available at: https://www.elibrary.ru/item.asp?id=2029
Tretyakov N. N., Mittova I. Ya., Sladkopevtsev B. V., Agapov B. L., Pelipenko D. I., Mironenko S. V. Surface morphology, composition, and structure of nanofilms grown on InP in the presence of V2O5. Inorganic Materials. 2015;51(7): 655-660. https://doi.org/10.1134/S002016851507016X
Mittova I. Ya., Sladkopevtsev B. V., Tomina E. V., Samsonov A. A., Tretyakov N. N., Ponomarenko S. V. Preparation of dielectric films via thermal oxidation of MnO2/GaAs. Inorganic Materials. 2018;54(11): 1085–1092. https://doi.org/10.1134/S0020168518110109
Shvets V. A., Rykhlitskii, S. V., Mittova, I. Yа., Tomina E. V. Analysis of the optical and structural properties of oxide films on InP using spectroscopic ellipsometry. Technical Physics. 2013;58: 1638–1645. https://doi.org/10.1134/S1063784213110248
Mittova I. Ya., Tomina E. V., Sladkopevtsev B. V., Tret’Yakov N. N., Lapenko A. A., Shvets V. A. Highspeed determination of the thickness and spectral ellipsometry investigation of films produced by the thermal oxidation of InP and VxOy/InP structures. Inorganic Materials. 2013;49(2): 179–184. https://doi.org/10.1134/S0020168513020143
Mittova I. Ya., Tomina E. V., Samsonov A. A., Sladkopevtsev B. V., Tret’yakov N. N., Shvets V. A. Determination of the thickness and optical constants of nanofilms produced by the thermal oxidation of InP with V2O5, V2O5 + PbO, and NiO + PbO chemical stimulator layers grown by magnetron sputtering. Inorganic Materials. 2013;49(10): 963–970. https://doi.org/10.1134/S0020168513100075
Kostryukov V. F., Mittova I. Ya., Shvets V. A., Tomina E. V., Sladkopevtsev B. V., Tret’yakov N. N. Spectral ellipsometry study of thin films grown on GaAs by chemically stimulated thermal oxidation. Inorganic Materials. 2014;50(9): 882–887. https://doi.org/10.1134/S0020168514090052
Sladkopevtsev B. V., Mittova I. Ya., Tomina E. V., Zabolotskaya A. V., Samsonov A. A., Dontsov A. I. Osobennosti kinetiki i mekhanizma formirovaniya plenok pri oksidirovanii geterostruktur V2O5/InP, sformirovannykh metoda mireaktivnogo magnetronnogo raspyleniya i elektricheskogo vzryva provodnika [Features of kinetics and echanism of films formation inoxidationof V 2O 5/ I n P heterostructures, formed by reactive magnetron sputtering and electric explosion of conductor]. Izvestiya vysshikh uchebnykh zavedenii. Fizika. 2014;57(7-2): 148–153. Available at: https://www.elibrary.ru/item.asp?id=23184829 (In Russ.)
Ugai Ya. A., Samoilov A. M., Synorov Yu. V., Yatsenko O. B., Zuev D. V. Poluchenie tonkikh plenok tellurida svintsa na kremnievykh podlozhkakh [Preparation of thin films of lead telluride on silicon substrates]. Neorganicheskie materialy. 1994;30(7): 898-902. Available at: https://elibrary.ru/item.asp?id=35103015 (In Russ.)
Ugai Y. A., Samoylov A. M., Sharov M. K., Tadeev A. V. Crystal microstructure of PbTe/Si and PbTe/SiO2/Si thin films. Thin Solid Films. 1998;336(1- 2): 196−200. https://doi.org/10.1016/S0040-6090(98)01278-4
Ugai Ya. A., Samoilov A. M., Synorov Yu. V., Yatsenko O. B. Electrical properties of thin PbTe films on Si substrates. Inorganic Materials. 2000;36(5): 449–453. https://doi.org/10.1007/BF02758045
Ugai Ya. A., Samoilov A. M., Sharov M. K., Arsenov A. V., Buchnev S. A. Vyrashchivanie plenok PbTe, legirovannykh galliem v protsesse ikh rosta, na Si-podlozhkakh pri pomoshchi modifitsirovannogo metoda “goryachei stenki” [Growing of PbTe films doped with gallium during their growth on Si substrates using a modified “hot wall” method.]. Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2002;3: 28–34. (In Russ.)
Ugai Ya. A., Samoylov A. M., Buchnev S. A., Synorov Yu. V., Sharov M. K. Ga doping of thin PbTe films on Si substrates during growth. Inorganic Materials. 2002;38(5): 450–456. https://doi.org/10.1023/A:1015410703238
Ugai Ya. A., Samoylov A. M., Sharov M. K., Yatsenko O. B., Akimov B. A. Transport properties of Ga-doped PbTe thin films on Si substrates. Inorganic Materials. 2002; 38 (1): 12−16. https://doi.org/10.1023/A:1013687024227
Samoylov A. M., Buchnev S. A., Khoviv A. M., Dolgopolova E. A., Zlomanov V. P. Comparative study of point defects induced in PbTe thin films doped with Ga by different techniques. Materials Science in Semiconductor Processing. 2003;6(5-6): 481−485. https://doi.org/10.1016/j.mssp.2003.07.014
Samoylov A. M., Khoviv A. M., Buchnev S. A., Synorov Yu. V., Dolgopolova E. A. Crystal structure and electrical parameters of In-doped PbTe/Si films prepared by modified HWE technique. Journal of Crystal Growth. 2003;254(1-2): 55−64. https://doi.org/10.1016/S0022-0248(03)01022-4
Samoilov A. M., Buchnev S. A., Synorov Yu. V., Agapov B. L. , Khoviv A. M. Vyrashchivanie modifitsirovannym metodom “goryachei stenki” plenok PbTe, legirovannykh In neposredstvenno v protsesse sinteza [Рreparation of PbTe thin films doped with indium on Si substrates by modified “hot wall” technique]. Poverkhnost’. entgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2004;1: 86-94. Available at: https://elibrary.ru/item.asp?id=17662304 (In Russ.)
Samoilov A. M., Buchnev S. A., Dolgopolova E. A., Khoviv A. M., Synorov Yu. V. Structural perfection of pbte films doped with indium during growth on Si substrates. Inorganic Materials. 2004;40(4): 349-354. https://doi.org/10.1023/B:INMA.0000023953.49486.2a6106 (In Russ.)
Dolgopolova E. A., Samoilov A. M., Synorov Yu. V., Khoviv A. M. Sintez legirovannykh In plenok PbTe s kontroliruemym soderzhaniem primesnykh atomov i otkloneniem ot stekhiometrii [Synthesis of In-doped PbTe films with controlled content of impurity atoms and deviation from stoichiometry]. Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2008;10: 17–22. Available at: https://elibrary.ru/item.asp?id=11533187 (In Russ.)
Belenko S. V., Dolgopolova E. A., Samoilov A. M., Synorov Yu. V., Sharov M. K. Oblast’ rastvorimosti galliya v plenkakh tellurida svintsa, vyrashchennykh na kremnievykh podlozhkakh [Gallium solubility region in lead telluride films grown on silicon substrates]. Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2010;2: 99–108. Available at: https://elibrary.ru/item.asp?id=13044799 (In Russ.)
Sharov M. K, Yatsenko O. B., Samoilov A. M. Elektrofizicheskie svoistva monokristallov tellurida svintsa, legirovannogo bromom [Electrophysical properties of single crystals of lead telluride doped with bromine.]. Poverkhnost’. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2010;7: 77–79. Available at:
https://elibrary.ru/item.asp?id=15142184 (In Russ.)
Samoylov A. M., Agapov B. L., Belenko S. V., Dolgopolova E. A., Khoviv A. M. Electrical properties and mechanisms of the point defect formation in PbTe(ln) films prepared by modified “Hot Wall” technique. Functional Materials. 2011;18(1): 29−36. Available at: https://elibrary.ru/item.asp?id=18002406
Samoylov A. M., Belenko S. V., Dolgopolova E. A., Khoviv A. M., Synorov Y. V. The solubility region of Ga in PbTe films prepared on Si-substrates by modified “Hot Wall” technique. Functional Materials. 2011;18(2): 181−188. Available at: https://www.elibrary.ru/item.asp?id=18002278
Samoylov A. M., Belenko S. V., Sharov M. K., Dolgopolova E. A., Zlomanov V. P. The deviation from a stoichiometry and the amphoteric behaviour of Ga in PbTe/Si films. Journal of Crystal Growth. 2012;351(1):
−154. https://doi.org/10.1016/j.jcrysgro.2012.01.042
Naumov A. V., Samoilov A. M., Lopatin S. I. Thermodynamic functions of mixing the melts in the Ga-Pb system. Russian Journal of General Chemistry. 2013;83(1): 26–31. https://doi.org/10.1134/S1070363213010040
Samoilov A. M., Belenko S. V., Siradze B. A., Toreev A. S., Dontsov A. I., Filonova I. V. Plotnosti dislokatsii
v plenkakh PbTe, vyrashchennykh na podlozhkakh Si (100) i BaF2 (100) modifitsirovannym metodom «goryachei stenki» [Dislocation densities in PbTe films grown on Si (100) and BaF2 (100) substrates by the modified hot wall method]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2013;15(3): 322-331. Available at: https://elibrary.ru/item.asp?id=20296109 (In Russ., abstract in Eng.)
Akimov A. N., Klimov A. E., Samoilov A. M., Shumskii V. N., Epov V. S. Zavisimost’ kinetiki fototoka v plenkakh Pbx–1SnxTe ot urovnya osveshcheniya i vremeni ekspozitsii [Dependence of photocurrent kinetics in Pbx-1SnxTe films on illumination intensity and duration of exposure]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases.. 2013;15(4): 378–381. Available at: https://elibrary.ru/item.asp?id=20931228 (In Russ., abstract in Eng.)
Samoilov A. M., Belenko S. V., Sharov M. K., Lopatin S. I., Synorov Y. V. Synthesis of films in the system Ga-Pb with precision control over quantitative composition. Russian Journal of General Chemistry. 2015;85(10): 2242–2251. https://doi.org/10.1134/S1070363215100059
Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part I. Physical and chemical properties and sensor signal formation. Inorganic Materials. 2015;51(13): 1329−1347. https://doi.org/10.1134/S002016851513004X
Ievlev V. M., Kushchev S. B., Sinel’nikov A. A., Soldatenko S. A., Ryabtsev S. V., Bosykh M. A., Samoilov A. M. Struktura geterosistem plenka SnO2–ostrovkovyi kondensat metalla (Ag, Au, Pd) [Structure of heterosystems SnO2 film – island condensate of metal (Ag, Au, Pd)]. Neorganicheskie materialy. 2016;52(7): 757–764. https://doi.org/10.7868/S0002337X1607006X (In Russ.)
Ryabtsev S. V., Shaposhnik A. V., Samoilov A. M., Sinel’nikov A. A., Soldatenko S. A., Kushchev S. B.,
Ievlev V. M. Tonkie plenki oksida palladiya dlya gazovykh sensorov [Palladium Oxide Thin Films for Gas Sensors]. Doklady Akademii nauk, seriya Fizicheskaya khimiya. 2016;470(5): 550–553. https://doi.org/10.7868/s0869565216290168 (In Russ.)
Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part II. Active centers and sensor behavior. Inorganic Materials. 2016;52(13): 1311–1338. https://doi.org/10.1134/S0020168516130045
Ievlev V. M., Ryabtsev S. V., Shaposhnik A. V., Samoylov A. M., Kuschev S. B., Sinelnikov A. A. Ultrathin films of palladium oxide for oxidizing gases detecting. Procedia Engineering. 2016;168: 1106−1109. https://doi.org/10.1016/j.proeng.2016.11.357
Ryabtsev S. V., Ievlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Microstructure and electrical properties of palladium oxide thin films for oxidizing gases detection. Thin Solid Films. 2017;636: 751−759. https://doi.org/10.1016/j.tsf.2017.04.009
Samoylov, A. M., Gvarishvili, L. J., Ivkov, S. A., Pelipenko, D. I., Badica, P. Two-stage Synthesis of palladium (II) oxide nanocrystalline powders for gas sensor. Research & Development in Material Sciences. 2018; 8(2):1−7. https://doi.org/10.31031/RDMS.2018.08.000682
Ievlev V. M., Ryabtsev S. V., Samoylov A. M., Shaposhnik A. V., Kuschev S. B., Sinelnikov A. A. Thin and ultrathin films of palladium oxide for oxidizing gases detection. Sensors and Actuators B: Chemical. 2018;255(2): 1335–1342. https://doi.org/10.1016/j.snb.2017.08.121
Samoilov A. M. , Kuz’minykh O. G. , Synorov Yu. V., Ivkov S. A., Agapov B. L., Belonogov E. K. Morfologiya poverkhnosti plenok PbTe/Si (100), sintezirovannykh modifitsirovannym metodom “goryachei stenki” [Surface morphology of PbTe/Si (100) films synthesized by modified “hot wall” epitaxy technique]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(1): 102–114. https://doi.org/10.17308/
kcmf.2018.20/483 (In Russ., abstracy in Eng.)
Samoylov A. M., Kuzminykh O. G., Belonogov E. K., Agapov B. L., Synorov Y. V., Belenko S. V. Growth kinetics and microstructure of PbTe films produced on Si and BaF2 substrates by a modified hotwall method. Inorganic Materials. 2018;54(4): 338-348. https://doi.org/10.1134/S002016851804012X
Samoylov A. M., Ryabtsev S. V., Popov V. N., Badica P. Palladium (II) oxide nanostructures as promising materials for gas sensors. In book: Novel Nanomaterials Synthesis and Applications. Edited by George Kyzas. UK, London: IntechOpen Publishing House; 2018. 211–229 p. https://doi.org/10.5772/intechopen.72323
Samoylov A. M., Ryabtsev S. V., Chuvenkova O. A, Ivkov S. S., Sharov M. К., Turishchev S. Yu. Crystal structure and surface phase composition of palladium oxides thin films for gas sensors. In book: SATF 2018. Science and Applications of Thin Films, Conference & Exhibition. Proceeding Book.: 17 to 21 September 2018. Turkey: Izmir, Izmir Institute of Technology; 2018. p. 43–56.
Samoylov A. M., Ivkov S. A., Pelipenko D. I., Sharov M. K., Tsyganova V. O., Agapov B. L., Tutov E. A., Badica P. Structural changes in palladium nanofilms during thermal oxidation. Inorganic Materials. 2020;56(10): 1020–1026. https://doi.org/10.1134/S0020168520100131
Samoilov A. M., Pelipenko D. I., Kuralenko N. S. Raschet oblasti nestekhiometrii nanokristallicheskikh plenok oksida palladiya (II) [Calculation of the nonstoichiometry area of nanocrystalline palladium (II) oxide films]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2021;23(1): 62–72. https://doi.org/10.17308/kcmf.2021.23/3305
Ponomareva N. I. , Popr ygina T. D. , Lesovoi M. V., Karpov S. I. Effect of alizarin red S on the formation of hydroxyapatite crystals. Russian Journal of General Chemistry. 2008;78(4): 521-526. https://doi.org/10.1134/S1070363208040038
Ponomareva N. I., Poprygina T. D., Karpov S. I., Lesovoi M. V., Agapov B. L. Mikroemul’sionnyi sposob polucheniya gidroksiapatita [Microemulsion method for producing hydroxyapatite]. Zhurnal obshchei khimii. 2010;80(5): 735–738. (In Russ.)
Ponomareva N. I. , Popr ygina T. D. , Lesovoi M. V., Karpov S. I., Agapov B. L. Issledovanie kompozitov gidroksiapatita s biopolimerami [The investigation of hydroxyapatite-biopolymer composites Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2009;11(3): 239–243. Available at: https://elibrary.ru/item.asp?id=12971539 (In Russ.)
Ponomareva N. I. , Popr ygina T. D. , Lesovoi M. V., Sokolov Yu. V., Agapov B. L. Crystal structure and composition of hydroxyapatite biocomposites prepared at excess of calcium ions. Russian Journal of General Chemistry. 2009;79(2): 186–190. https://doi.org/10.1134/S1070363209020030
Ponomareva N. I., Poprygina T. D., Karpov S. I., Sokolov Yu. V. Issledovanie mikrotverdosti kompozitov gidroksiapatita s biopolimerami [Investigation of microhardness of composites of hydroxyapatite with
biopolymers]. Vestnik VGU, Seriya «Khimiya. Biologiya. Farmatsiya». 2012;2: 45–50. (In Russ.)
Ponomareva N. I., Poprygina T. D., Lesovoi M. V., Sokolov Yu. V. Vliyanie primesei zheleza na poluchenie
i kharakteristiki apatitovykh pokrytii titanovykh implantantov [The influence of iron admixtures on the synthesis and characteristics of apatite coatings of titanium implants]. Sistemnyi analiz i upravlenie v biomeditsinskikh sistemakh. 2010;9(2) 448–451. Available at: https://elibrary.ru/item.asp?id=14749925
Ponomareva N. I., Poprygina T. D., Kashkarov V. M., Lesovoi M. V. Calcite and apatite coatings on titanium. Russian Journal of Inorganic Chemistry. 2011;56(11): 1713–1716. https://doi.org/10.1134/S0036023611110209
Ponomareva N. I., Poprygina T. D. Procedure for application of coating on items out of titanium: Patent No. 2453630 RF. Claim. 11.01.2011. Publ. 20.06.2012. Byul. No 17.
Ponomareva N. I., Poprygina T. D., Ponomarev Yu. A., Soldatenko S. A. A study of resorption of the hydroxyapatite in the composition of impregnated carbon implants. Russian Journal of General Chemistry.
;82(9): 1472–1475. https://doi.org/10.1134/S1070363212090022
Ponomareva N. I., Poprygina T. D., Karpov S. I., Samodai V. G. Vliyanie ionov margantsa na sintez i kharakteri stiki gidroksiapatita v sostave impregnirovannykh uglerodistykh implantatov [Effect of manganese ions on the synthesis and characteristics of hydroxyapatite in the composition of impregnated carbon implants]. probatsiya. 2013;5(8): 21–23. Available at: https://elibrary.ru/item.asp?id=23216891
Xu C., Yang Y., Wang S., Duan W., Gu B., Bellaiche L. Anomalous properties of hexagonal rareearth ferrites from first principles. Physical Review B. 2014;89(20): 205122. https://doi.org/10.1103/PhysRevB.89.205122
Mahalakshmi S. , SrinivasaManja K. , Nithiyanantham S. Electrical properties of nanophase ferrites doped with Rare Earth Ions. Journal of Superconductivity and Novel Magnetism. 2014;27(9): 2083–2088. https://doi.org/10.1007/s10948-014-2551-y
Fahlman B. Materials Chemistry. Springer; 2007. 485 p.
Gusev A. I. Nanomaterials, nanostructures, nanotechnologies. Moscow: Fizmatlit Publ.; 2005. 416 p. (In Russ.)
Maiti R. Basu S., Chakravorty D. Synthesis of nanocrystalline YFeO3 and its magnetic properties. Journal of Magnetism and Magnetic Materials. 2009;321(19): 3274–3277. https://doi.org/10.1016/j.jmmm.2009.05.061
Kolb E. D. The hydrothermal growth of rare earth orthoferrites. Journal of Applied Physics. 1968; 39(2): 1362–1364. https://doi.org/10.1063/1.1656305
Cheng Z. X., Shen H., Xu J., Liu P., Zhang S. J., Wang J. L., Wang X. L., Dou S. X. Magnetocapacitance effect in nonmultiferroic YFeO3 single crystal. Journal of Applied Physics. 2012;111(3): 34103.1-5. https://doi.org/10.1063/1.3681294
Racu A. V., Ursu D. H., Kuliukova O. V., Logofatu C., Leca A., Miclau M. Direct low temperature hydrothermal synthesis of YFeO3 microcrystals. Materials Letters. 2015;140(1): 107–110. https://doi.org/10.1016/j.matlet.2014.10.129
Duan L., Jiang G.-J., Peng W., Cheng M., Wang X.-J. Influence of reaction conditions on the phase composition, particle size and magnetic properties of YFeO3 microcrystals synthesized by hydrothermal method.
Journal of Synthetic Crystals. 2015;44(8): 2144-2149.
Popkov V. I., Almjasheva O. V. Formation mechanism of YFeO3 nanoparticles under the hydrothermal condition. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(5): 703–708. Available at: https://www.elibrary.ru/item.asp?id=22415667
Tang P., Sun H., Chen H., Cao F. Hydrothermal processing-assisted synthesis of nanocrystalline YFeO3 and its visible-light photocatalytic activity. Current Nanoscience. 2012;8(1): 64–67. https://doi.org/10.2174/1573413711208010064
Popkov V. I., Almjasheva O. V., Gusarov V. V. The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders. Russian Journal of Applied
Chemistry. 2014;87(10): 1417–1421. https://doi.org/10.1134/S1070427214100048
Popkov V. I., Almjasheva O. V. Yttrium orthoferrite YFeO3 nanopowders formation under glycine-nitrate combustion conditions. Russian Journal of Applied Chemistry. 2014;87(2): 167–171. https://doi.org/10.1134/S1070427214020074
Mathur S., Veith M., Rapalaviciute R., Shen H., Goya G. F., Martins Filho W. L., Berquo T. S. Berquo Molecule derived synthesis of nanocrystalline YFeO3 and investigations on its weak ferromagnetic behavior. Chemistry of Materials. 2004;16(10): 1906–1913. https://doi.org/10.1021/cm0311729
Tretyakov Yu. D. Development of inorganic chemistry as a fundamental for the design of new generations of functional materials. Russian Chemical Reviews. 2004;73(9): 831–846. https://doi.org/10.1070/RC2004v073n09ABEH000914
Niepce C. J., Stuerga D., Caillot T., Clerk J.P., Granovsky A., Inoue M., Perov N., Pourroy G. The magnetic properties of magnetic nanoparticles produced by microwave flash synthesis of ferrous alcoholic solutions. IEEE Transactions on Magnetics. 2002;38(51): 2622–2624. https://doi.org/10.1109/TMAG.2002.801963
Zou J., Gong W., Ma J., Li L., Jiang J. Efficient catalytic activity BiFeO3 nanoparticles prepared by novel microwave-assisted aynthesis. Journal of Nanoscience and Nanotechnology. 2015;15(2): 1304–1311. https://doi.org/10.1166/jnn.2015.9074
Tomina E. V., Mittova I. Y., Stekleneva O. V., Kurkin N. A., Perov N. S., Alekhina Y. A. Microwave synthesis and magnetic properties of bismuth ferrite nanopowder doped with cobalt. Russian Chemical Bulletin. 2020;69(5): 941–946. https://doi.org/10.1007/s11172-020-2852-1
Tomina E. V., Darinskii B. M., Mittova I. Y., Boikov N. I., Ivanova O. V., Churkin V. D. Microwaveassisted synthesis of YСохFe1–хO3 nanocrystals. Inorganic Materials. 2019;55(4): 390–394. https://doi.org/10.1134/S0020168519040150
Din’ V. T., Mittova V. O., Mittova I. Ya. Vliyanie soderzhaniya lantana i temperatury otzhiga na razmer i magnitnye svoistva nanokristallov Y1-xLaxFeO3, poluchennykh zol’ – gel’ metodom [Influence of lanthanum content and annealing temperature on the size and magnetic properties of Y1-xLaxFeO3 nanocrystals obtained by the sol – gel method]. Neorganicheskie materialy. 2011;47(5): 590–595. Available at: https://www.elibrary.ru/item.asp?id=16339649 (In Russ.)
Nguen A. T., Mittova I. Ya., Solodukhin D. O., Al’myasheva O. V., Mittova V. O., Demidova S. Yu. Zol’- gel’ formirovanie i svoistva nanokristallov tverdykh rastvorov Y1-xCaxFeO3 [Sol-gel formation and properties of nanocrystals of Y1-xCaxFeO3 solid solutions]. Zhurnal neorganicheskoi khimii. 2014;59(2): 166–171. https://doi.org/10.7868/S0044457X14020159 (In Russ.)
Din’ V. T., Mittova V. O., Al’myasheva O. V., Mittova I. Ya. Cintez i magnitnye svoistva nanokristallicheskogo Y1–xCdxFeO3–d (0 ≤ x ≤ 0.2) [Synthesis and magnetic properties of nanocrystalline Y1–xCdxFeO3–d (0 ≤ x ≤ 0.2)]. Neorganicheskie materialy. 2011;47(10): 1251–1256. Available at: https://www.elibrary.ru/item.asp?id=16893013 (In Russ.)
Nguyen A. T. Synthesis, structure and properties of nanopowders La(Y)1–xSr(Ca)xFeO3 (x = 0.0; 0.1; 0.2; 0.3). Diss. Cand. Chem. Sciences / Voronezh: Voronezh State University; 2009. 153 p. Available at: https://www.dissercat.com/content/sintez-struktura-i-svoistva-nanoporoshkov-lay1-xsrcaxfeo3-x-00-01-02-03 (In Russ.)
Polezhaeva O. S., Dolgopolova E. A., Baranchikov A. E., Ivanov V. K., Tret’yakov Yu. D. Sintez nanokristallicheskikh tverdykh rastvorovna osnove dioksida tseriya, dopirovannogo RZE [Synthesis of nanocrystalline solid solutions based on cerium dioxide doped with REE]. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2010;12(2): 154–159. Available at: https://www.elibrary.ru/item.asp?id=15176050 (In Russ., abstract in Eng.)
Batsanov S. S. Strukturnaya khimiya. Fakty i zavisimosti [Structural chemistry. Facts and dependencies]. M.: Dialog – MGU Publ.; 2000. 292 p. (In Russ.)
Berezhnaya M. V., Al’myasheva O. V., Mittova V. O., Nguyen A. T., Mittova I. Ya. Sol-gel synthesis and properties of Y1–xBaxFeO3 nanocrystals. Russian Journal of General Chemistry. 2018;88(6): 1349–1349.
https://doi.org/10.1134/S1070363218060464
Berezhnaya M. V., Mittova I. Ya., Perov N. S., Al’myasheva O. V., Nguyen A. T., Mittova V. O., Bessalova V. V., Viryutina E. L. Production of zincdoped yttrium ferrite nanopowders by the sol–gel method. Russian Journal of Inorganic Chemistry. 2018;63(6): 742–746. https://doi.org/10.1134/s0036023618060049
Mittova I. Ya., Solodukhin D. O., Mittova V. O., Demidova S. Yu., Knurova M. V. Method for obtaining nanocrystalline magnetic powder of doped yttrium orthoferrite: Patent No No 2574558 RF. Claim. 04.12.2013. Publ. 10.02.2016. Byul. No 4.
Nguen A. T., Mittova V. O., Mittova I. Ya., Din’ V. T. Synthesis of La1-xSr(Са)xFeO3 (х = 0; 0.1; 0.2; 0.3) nanopowders by thesol-gel method . Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2010;12(1): 56–60. Available at: https://w w w.elibrar y.ru/item.asp?id=15164382 (In Russ., abstract in Eng.)
Berezhnaya M. V., Perov N. S., Almjasheva O. V., Mittova V. O., Nguyen A. T., Mittova I. Ya., Druzhinina L. V., Alekhina Yu. A. Synthesis and magnetic properties of barium-doped nanocrystal lanthanum orthoferrite. Russian Journal of General Chemistry. 2019;89(3): 480–485. https://doi.org/10.1134/s1070363219030198
Knurova M. V., Mittova I. Ya., Perov N. S., Al’myasheva O. V., Tien N. A., Mittova V. O., Bessalova V. V., Viryutina E. L. Effect of the degree of doping on the size and magnetic properties of nanocrystals La1 – x ZnxFeO3 synthesized by the sol–gel method. Russian Journal of Inorganic Chemistry. 2017;62(3): 281–287. https://doi.org/10.1134/s0036023617030081
Lin Q., Xu J., Yang F., Yang X., He Y. The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties. Journal of Applied Biomaterials & Functional Materials. 2018; 16(1S):17–25. https://doi.org/10.1177/2280800017753948
Belov K. P. Magnitostriktsionnye yavleniya i ikh tekhnicheskie prilozheniya [Magnetostrictive phenomena and their technical applications]. M.: Nauka Publ.; 1987. 160 p. (In Russ.)
Mukhopadhyay K., Mahapatra A. S., Chakrabarti P. K. Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1-x)ZnxFeO3, x=0.10, and 0.30). Journal of Magnetism and Magnetic Materials. 2013;329: 133–141. https://doi.org/10.1016/j.jmmm.2012.09.063
Mukhopadhyay K., Mahapatra A. S., Chakrabarti P. K. Enhanced magneto-electric property and exchange bias effect of Zn substituted LaFeO3 (La0.50Zn0.50FeO3). Materials Letters. 2015;159: 9–11. https://doi.org/10.1016/j.matlet.2015.06.059
Bhat I., Husain S., Khan W. Structural and dielectric properties of LaFe1-xZnxO3 (0≤x≤0.3). AIP Conference Proceedings. 2013;1512: 968–969. https://doi.org/10.1063/1.4791364
Bhat I., Husain S., Khan W., Patil S. I. Effect of Zn doping on structural, magnetic and dielectric properties of LaFeO3 synthesized through sol–gel auto-combustion process. Materials Research Bulletin. 2013;48(11): 4506–4512. https://doi.org/10.1016/j.materresbull.2013.07.028
Almjasheva O. V. , Tomkovich M. V. , Gusarov V. V., Smirnov A.V., Fedorov B.A. structural features of ZrО2-Y2O3 and ZrО2-Gd2O3 nanoparticles formed under hydrothermal conditions. Russian Journal of General Chemistry. 2014;84(5): 804–809. https://doi.org/10.1134/S1070363214050028
Тugova Е. А., Gusarov V. V. Structure peculiarities of nanocrystalline solid solutions in GdAlO3 — GdFeO3 system. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(3): 352-356. Available at: https://www.elibrary.ru/item.asp?id=19412861
Marenkin S. F., Izotov A. D., Fedorchenko I. V., Novotortsev V. M. Manufacture of magnetic granular tructures in semiconductor-ferromagnet systems. Russian Journal of Inorganic Chemistry. 2015;60(3): 295-300. https://doi.org/10.1134/S0036023615030146
Gupta A. K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18): 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
Shen H., Xu J., Jin M., Jiang G. Influence of manganese on the structure and magnetic properties of YFeO3 nanocrystal. Ceramics International. 2012;38(2): 1473–1477. https://doi.org/10.1016/j.ceramint.2011.09.030
Ma Y., Wu Y. J., Lin Y. Q., Chen X. M. Microstructures and multiferroic properties of YFe1−xMnxO3 ceramics prepared by spark plasma sintering. Journal of Materials Science: Materials in Electronics. 2010;21(8):
–843. https://doi.org/10.1007/s10854-009-0004-3
Nguyen T. A., Pham V. N. T., Le H. T., Chau D. H., Mittova V. O. Tr Nguyen L. T., Dinh D. A., Hao T. V. N., Mittova I. Ya. Crystal structure and magnetic properties of LaFe1-xNixO3 nanomaterials prepared via a simple co-precipitation method. Ceramics International. 2019;45(17): 21768−21772. https://doi.org/10.1016/j.ceramint.2019.07.178
Nguyen A. T., Pham V., Chau D. H., Mittova V. O., Mittova I. Ya., Kopeychenko E. I., Nguyen L. T. Tr., Bui
V. X., Nguyen A. T. P. Effect of Ni substitution on phase transition, crystal structure and magnetic properties
of nanostructured YFeO3 perovskite. Journal of Molecular Structure. 2020;1215: 12829. https://doi.org/10.1016/j.molstruc.2020.128293
Nguyen A. T., Pham V. N. T., Nguyen T. T. L., Mittova V. O., Vo Q. M., Berezhnaya M. V., Mittova I. Ya, Do Tr. H., Chau H. D. Crystal structure and magnetic properties of perovskite YFe1-xMnxO3 nanopowders synthesized by co-precipitation method. Solid State Sciences. 2019;96: 105922. https://doi.org/10.1016/j.solidstatesciences.2019.06.011
Kopeichenko E. I., Mittova I. Ya., Perov N. C., Nguen A. T., Mittova V. O., Alekhina Yu. A., Fam V. Sintez, sostav i magnitnye svoistva nanoporoshkov ferrita lantana, dopirovannogo kadmiem [Synthesis, composition and magnetic properties of cadmiumdoped lanthanum ferrite nanopowders]. Neorganicheskie materialy. 2021;57(4): 388–392. https://doi.org/10.31857/S0002337X21040072 (In Russ.)
Nguyen T. A., Berezhnaya M. V., Mittova I. Y., Viryutina E. L., Pham T. L., Nguyen L. T. T., Mittova V. O., Vo M. Q., Do H. T. Synthesis and magnetic characteristics of neodymium ferrite powders with perovskite structure. Russian Journal of Applied Chemistry. 2019;92(4): 498–504. https://doi.org/10.1134/S1070427219040050
Nguyen T. A., Pham V., Pham T. L., Nguyen L. T. T., Mittova I. Ya., Mittova V. O., Lan N. V., Nguyen B. T. T., Bui V. X., Viryutina E. L. Simple synthesis of NdFeO3 nanoparticles by the co-precipitation method based on a study of thermal behaviors of Fe (III) and Nd (III) hydroxides. Crystals. 2020;10(3): 219. https://doi.org/10.3390/cryst10030219
Nguyen A. T., Nguyen V. Y., Mittova I. Ya., Mittova V. O., Viryutina E. L., Hoang C. Ch. T., Nguyen Tr. L. T., Bui X.V., Do T. H. Synthesis and magnetic properties of PrFeO3 nanopowders by the co-precipitation method using ethanol. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(4): 463–473. https://doi.org/10.17586/2220-8054-2020-11-4-468-473
Nguyen A. T., Tran H. L. T., Nguyen Ph. U. T., Mittova I. Ya., Mittova V. O., Viryutina E. L., Nguyen V. H., Bui X. V., Nguyen T. L. Sol-gel synthesis and the investigation of the properties of nanocrystalline holmium orthoferrite. Nanosystems: Physics, Chemistry, Mathematics. 2020;11(6): 698–704. https://doi.org/10.17586/2220-8054-2020-11-6-698-704
Nguyen A. T., Nguyen T. D., Mittova V. O., Berezhnaya M. V., Mittova I. Ya. Phase composition and magnetic properties of Ni1-XCoXFe2O4 nanocrystals with spinel structure, synthesized by co-precipiation. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(3): 371–377. https://doi.org/10.17586/2220-8054-2017-8-3-371-377
Nguyen T. A., Nguyen L. T. Tr., Bui V. X., Nguyen D. H. T., Lieu H. D., Le L. M. T., Pham V. Optical and magnetic properties of HoFeO3 nanocrystals prepared by a simple co-precipitation method using ethanol. Journal of Alloys and Compounds. 2020;834: 155098. https://doi.org/10.1016/j.jallcom.2020.155098
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.