Влияние наноразмерных слоев хемостимулятора-модификатора Mn3(P0.1V0.9O4)2 на процесс термического оксидирования GaAs, состав и морфологию формируемых плёнок

Keywords: gallium arsenide, manganese vanadate-phosphate, nanoscale fi lms, chemostimulated oxidation, microwave synthesis.

Abstract

Chemostimulated thermal oxidation is one of the approaches to the formation of functional nanoscale fi lms on an AIIIBV surface. In order to obtain the desired result, it is necessary to reasonably choose an object that can act as a chemostimulator of the process or a modifi er of the structure and properties of films formed as a result of oxidation. The use of complex compounds capable of combining both of these functions seems to be effective. The purpose of the study was an investigation into the effect of nanoscale layers of the Mn3(P0.1V0.9O4)2 chemostimulator-modifi er on the process of thermal oxidation of
GaAs, its composition, and morphology of the formed fi lms.
The object of study was gallium arsenide (100) with nanosized layers of manganese vanadate-phosphate Mn3(P0.1V0.9O4)2 deposited on its surface. In order to increase the speed of the process and ensure the high chemical homogeneity of the product, it was proposed to use microwave activation of the synthesis of the chemostimulator-modifi er Mn3(P0.1V0.9O4)2 and its further deposition onto the surface of the semiconductor by the spin-coating method. The formed Mn3(P0.1V0.9O4)2/GaAs heterostructures were thermally oxidized in the temperature range 490–550 °C for 60 min in an oxygen stream. The thickness
of the growing fi lms (by laser and spectral ellipsometry), their composition (X-ray phase analysis, Auger electron spectroscopy), and surface morphology (atomic force microscopy) were controlled.
Studies of the kinetics of thermal oxidation of Mn3(P0.1V0.9O4)2/ GaAs heterostructures showed that the determining process is the solid-phase reaction, limited by diffusion in the solid phase, and the transit character of the chemostimulator without the catalytic effect occurs. It was revealed that manganese vanadate-phosphate promoted an increase in the growth of the formed fi lm by an average of 70–220% compared to the standard oxidation of GaAs, leads to the intensifi cation of secondary
interactions of the oxides of the substrate components with the products of thermolysis of Mn3(P0.1V0.9O4)2 and the absence of segregation of arsenic in the fi lm in a non-oxidized state.
Thermal oxidation of Mn3(P0.1V0.9O4)2/GaAs heterostructures results in the formation of nanoscale (50-200 nm) fi lms with a fairly pronounced relief. Further study of the electrophysical characteristics of the fi lms is necessary, since composition data suggest they possess a dielectric nature. This can be used in practice for the formation of fi lms on the surface of AIIIBV with functional purposes and with widely varying characteristics.

 

 

 

 

REFERENCES

  1. Tang M., Park J.-S., Wang Z., Chen S., Jurczak P., Seeds A., Liu H. Integration of III-V lasers on Si for Si photonics. Progress in Quantum Electronics. 2019;66: 1–18. DOI: https://doi.org/10.1016/j.pquantelec.2019.05.002
  2. Torkhov N. A., Babak L. I., Kokolov A. A. On the application of Schottky contacts in the microwave, extremely high frequency, and THz ranges. Semiconductors.2019;53: 1688–1698. DOI: https://doi.org/10.1134/S1063782619160280
  3. Lutz J., Schlangenotto H., Scheuermann U., De Doncker R. Semiconductor power devices. Physics, characteristics, reliability. Springer-Verlag Berlin Heidelberg; 2018. 714 p. DOI: https://doi.org/10.1007/978-3-319-70917-8
  4. Yadav S., Rajan C., Sharma D., Balotiya S. GaAs- SiGe based novel device structure of doping less tunnel FET. In: Sengupta A., Dasgupta S., Singh V., Sharma R., Kumar Vishvakarma S. (eds.) VLSI Design and Test. VDAT 2019. Communications in computer and information science, vol. 1066. Singapore: Springer 2019.p. 694–701. DOI: https://doi.org/10.1007/978-981-32-9767-8_57
  5. Klotzkin D. J. Semiconductors as laser materials 1: Fun damentals. In: Introduction to semiconductor lasers for optical communications. Springer, Cham; 2020. p. 31–52. DOI:
    https://doi.org/10.1007/978-3-030-24501-6_3
  6. Paswan R. K., Panda D. K., Lenka T. R. Dielectric Modulated AlGaAs/GaAs HEMT for label free detection of biomolecules. In: Sharma R., Rawal D. (eds.) The physics of semiconductor devices. IWPSD 2017. Springer proceedings in physics, vol. 215. Springer, Cham; 2017. p. 709–715. DOI: https://doi.org/10.1007/978-3-319-97604-4_109
  7. Eichler H. J., Eichler J., Lux O. Semiconductor lasers. In: Lasers. Springer Series in Optical Sciences, vol. 220. Springer, Cham; 2018.p. 165–203. DOI: https://doi.org/10.1007/978-3-319-99895-4_10
  8. Mikhailova M. P., Moiseev K. D., Yakovlev Y. P. Discovery of III – V semiconductors: physical properties and application semiconductors. Semiconductors. 2019;53(3): 273–290. DOI: https://doi.org/10.1134/S1063782619030126
  9. Anfertev V. A., Vaks V. L., Reutov A. I., Baranov A. N., Teissier R. Studying the frequency characteristics of THz quantum cascade lasers with using the open optical resonator. Journal of radioelectronics. 2018;12:14–24. DOI: https://doi.org/10.30898/1684-1719.2018.12.5 (In Russ.)
  10. Pawar S. A., Kim D., Kim A., Park J. H., Shin J. C., Kim T. W., Kim H. J. Heterojunction solar cell based on n-MoS2/p-InP. Optical Materials. 2018;86: 576–581. DOI: https://doi.org/10.1016/j.optmat.2018.10.052
  11. Sugiyama H., Uchida K., Han X., Periyanayagam G. K., Aikawa M., Hayasaka N., Shimomura K. MOVPE grown GaInAsP/GaInAsP SCH-MQW laser diode on directly-bonded InP/Si substrate. Journal of Crystal Growth. 2019;507:93–97. DOI: https://doi.org/10.1016/j.jcrysgro.2018.10.024
  12. Sharma S. K., Singh S. P., Kim D. Y. Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method. Solid State Communications. 2018;270:124–129. DOI: https://doi.org/10.1016/j.ssc.2017.12.010
  13. Asalzadeh S., Yasserian K. The effect of various annealing cooling rates on electrical and morphological properties of TiO2 thin fi lms. Semiconductors. 2019;53: 1603–1607. DOI: https://doi.org/10.1134/S1063782619160036
  14. Tomina E. V., Mittova I. Ya., Sladkopevtsev B. V., Kostryukov V. F., Samsonov A. A., Tretyakov N. N. Thermal oxidation as a method of formation of nanoscale functional fi lms on AIIIBV semiconductors: chemostimulated infl uence of metal oxides overview. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2018;20(2):184-203. DOI: https://doi.org/10.17308/kcmf.2018.20/522 (In Russ., Abstract in Eng.)
  15. Liu H. A short review on thermal vapor sulfurization of semiconductor thin films for optoelectronic applications. Vacuum. 2018;154; 44–48.  DOI: https://doi.org/10.1016/j.vacuum.2018.04.050
  16. Mittova I. Ya., Sladkopevtsev B. V., Tomina E. V., Samsonov A. A., Tretyakov N. N., Ponomarenko S. V. Preparation of dielectric fi lms via thermal oxidation of MnO2/GaAs. Inorganic Materials. 2018;54(11): 1085–1092. DOI: 10.1134 / S0020168518110109
  17. Housecroft C., Sharpe A.G. Inorganic Chemistry (4th ed.). Pearson; 2012. 1213 p.
  18. Mittova I. Ya., Tomina E. V., Lapenko A. A., Khorokhordina A. O. Solid-state reactions during thermal oxidation of vanadium-modified GaAs surfaces. Inorganic Materials. 2004;40(5): 441-444.
  19. Spicer W. E., Lindau I., Skeath P., Su C. Y., Chye P. Unifi ed mechanism for Schottky-barrier formation and III–V oxide inter-face states. Physical Review Letters. 1980;44: 420. DOI: https://doi.org/10.1103/PhysRevLett.44.420
  20. Tomina E. V., Mittova I. Ya., Burtseva N. A., Sladkopevtsev B. V. A method for the synthesis of a phosphor based on yttrium orthovanadate. Patent No. 2548089 RF. Claim 11.12.2013. Publ. 05.20.2015. Byul. No. 2013133382/05.
  21. Brandon D., Kaplan W. D. Microstructural characterization of materials. John Wiley & Sons Ltd; 1999. 409 p.
  22. Popielarski P., Mosinska L., Bala W., Paprocki K., Zorenko Yu., Zorenko T., Sypniewska M. Persistent photoconductivity in ZnO thin films grown on Si substrate by spin coating method. Optical Materials. 2019;97: 109343. DOI: https://doi.org/10.1016/j.optmat.2019.109343
  23. Feng C., Zhang Y., Liu J., Qian Y., Bai X. Optimized chemical cleaning procedure for enhancing photoemission from GaAs photocathode. Materials Science in Semiconductor Processing. 2019;91: 41–46. DOI: https://doi.org/10.1016/j.mssp.2018.11.003
  24. Mittova I. Ya., Tomina E. V., Sladkopevtsev B. V., Tret’yakov N. N., Lapenko A. A., Shvets V. A. Highspeed determination of the thickness and spectral ellipsometry investigation of fi lms produced by the thermal oxidation of InP and VXOY/InP structures. Inorganic Materials. 2013;49(2): 179–184.
  25. Kostyukhin E. M. Synthesis of magnetite nanoparticles upon microwave and convection heating. Russian Journal of Physical Chemistry A. 2018;92(12): 2399–2402. DOI: https://doi.org/10.1134/S0044453718120233
  26. Budin O. N., Budin O. N., Kropachev A. N., Agafonov D. G., Cherepov V. V. Investigation into the carbothermic method of digestion of titanium raw materials by the example of artifi cially synthesized perovskite. Russian Journal of Non-Ferrous Metals. 2018;59(6): 612–616. DOI: https://doi.org/10.3103/S1067821218060020
  27. Kuznetsova V. A., Almjasheva O. V., Gusarov V. V. Infl uence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions. Glass Physics and Chemistry. 2009;35(2): 205–209. DOI: https://doi.org/10.1134/S1087659609020138
  28. Tretyakov Yu. D. Development of inorganic chemistry as a fundamental for the design of new generations of functional materials. Russian Chemical Reviews. 2004;73(9): 831–846. DOI: https://doi.org/10.1070/RC2004v073n09ABEH000914
  29. Krasnenko T. I., Samigullina R. F., Rotermel M. V., Nikolaenko I. V., Zaitseva N. A., Onufrieva T. A., Ishchenko A. V. The effect of the synthesis method on the morphological and luminescence characteristics of a-Zn2V2O7. Russian Journal of Inorganic Chemistry. 2017;62(3):269–274. DOI: https://doi.org/10.7868/S0044457X17030114
  30. JCPDC PCPDFWIN: A Windows Retrieval/ Display program for Accessing the ICDD PDF - 2 Data base. International Center for Diffraction Data; 1997.

Downloads

Download data is not yet available.

Author Biographies

Elena V. Tomina, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Chemistry, Associate Professor, Department of Materials Science and
Industry of Nanosystems, Voronezh State University, Voronezh, Russian Federation; e-mail: tomina-ev@yandex.ru.

Boris V. Sladkopevtsev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

PhD in Chemistry, Associate Professor, Department of Materials Science and Industry of Nanosystems, Voronezh State University, Voronezh, Russian Federation; e-mail: dp-kmins@yandex.ru.

Aleksey I. Dontsov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation; Voronezh State Technical University, 14 Moskovsky av., Voronezh 394026, Russian Federation

PhD in Phys.-Math., Associate Professor, Department of Materials Science and Industry of Nanosystems, Voronezh State University; Associate Professor of the Department of Physics, Voronezh State Technical University, Voronezh, Russian Federation; e-mail: dontalex@mail.ru.

Lidia I. Perfileva, Voronezh State Technical University, 14 Moskovsky av., Voronezh 394026, Russian Federation

MSc student, Voronezh State University, Voronezh, Russian Federation; e-mail:
stepina-Lidija97@yandex.ru

Irina Ya. Mittova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Chemistry, Professor, Department of Materials Science and Industry of Nanosystems, Voronezh State University, Voronezh, Russian Federation; e-mail: imittova@mail.ru.

Published
2020-03-20
How to Cite
Tomina, E. V., Sladkopevtsev, B. V., Dontsov, A. I., Perfileva, L. I., & Mittova, I. Y. (2020). Влияние наноразмерных слоев хемостимулятора-модификатора Mn3(P0.1V0.9O4)2 на процесс термического оксидирования GaAs, состав и морфологию формируемых плёнок. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 22(1). https://doi.org/10.17308/kcmf.2020.22/2535
Section
Статьи