Synthesis of bulk crystals and thin films of the ferromagnetic MnSb

  • Muhammadyusuf Jaloliddinzoda 1National University of Science and Technology MISIS, 4 Leninskiy prospekt, Moscow 119049, Russian Federation https://orcid.org/0000-0002-5187-5136
  • Sergey F. Marenkin National University of Science and Technology MISIS, 4 Leninskiy prospekt, Moscow 119049, Russian Federation; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0003-2577-6481
  • Alexey I. Ril’ Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0002-7745-2529
  • Mikhail G. Vasil’ev Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0002-4279-1707
  • Alexander D. Izotov Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0002-4639-3415
  • Denis E. Korkin Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0001-6838-3974
Keywords: High-temperature soft ferromagnets, XRD, DTA, Thin films, Microstructure analysis, Manganese antimonide (MnSb)

Abstract

High-temperature ferromagnets are widely used on a practical level. Based on them, magnetic memory for computers and various types of magnetic field sensors are created. Therefore, bulk ingots and thin-film samples of ferromagnet manganese antimonide (MnSb) with a high Curie point are of great interest, both from the practical and fundamental sides. Manganese antimonide films are obtained in hybrid structures using molecular-beam epitaxy. The thickness of the films does not exceed tens of nanometers. Despite their high sensitivity to magnetic fields, their small thickness prevents them from being used as magnetic field sensors. The aim of this work was to synthesise thick bulk ingots of manganese antimonide crystals
and films with a thickness of ~ 400 nm on sitall and silicon substrates. MnSb crystals were synthesised using the vacuum-ampoule method and identified using XRD, DTA, and microstructural analysis. The results of studies of bulk samples indicated the presence of an insignificant amount of antimony in addition
to the MnSb phase. According to the DTA thermogram of the MnSb alloy, a small endothermic effect was observed at 572 °C, which corresponds to the melting of the eutectic on the part of antimony in the Mn-Sb system. Such composition, according to previous studies, guaranteed the production of manganese antimonide with the maximum Curie temperature. A study of the magnetic properties showed that the synthesised MnSb crystals were a soft ferromagnet with the Curie point ~ 587 K. Thin MnSb films were obtained by an original method using separate sequential deposition in a high vacuum of the Mn
and Sb metals with their subsequent annealing. To optimise the process of obtaining films with stoichiometric composition, the dependences of the thickness of metal films on the parameters of the deposition process were calculated. The temperature range of annealing at which the metals interact with the formation of ferromagnetic MnSb films was established, the films were identified, and their electrical and magnetic properties were measured 

Downloads

Download data is not yet available.

Author Biographies

Muhammadyusuf Jaloliddinzoda, 1National University of Science and Technology MISIS, 4 Leninskiy prospekt, Moscow 119049, Russian Federation

PhD student,
Department of Electronic materials technology,
National University of Science and Technology
“MISIS”, Moscow, Russian Federation; e-mail:
muhammad.9095@mail.ru

Sergey F. Marenkin, National University of Science and Technology MISIS, 4 Leninskiy prospekt, Moscow 119049, Russian Federation; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

DSc in Chemistry, Professor,
Chief Researcher of the Laboratory of Semiconductor
and Dielectric Materials, Kurnakov Institute of General
and Inorganic Chemistry of the Russian Academy of
Sciences, Moscow, Russian Federation;
email: marenkin@rambler.ru

Alexey I. Ril’, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

Junior Researcher at the Laboratory
of Semiconductor and Dielectric Materials, Kurnakov
Institute of General and Inorganic Chemistry of the
Russian Academy of Sciences, Moscow, Russian
Federation; e-mail: ril_alexey@mail.ru

Mikhail G. Vasil’ev, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

DSc in Technical Sciences,
Professor, Head of the Laboratory of Semiconductor
and Dielectric Materials, Kurnakov Institute of General
and Inorganic Chemistry of the Russian Academy of
Sciences, Moscow, Russian Federation; e-mail:
mgvas@igic.ras.ru

Alexander D. Izotov, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

DS cin Chemistry,
Corresponding Member of Russian Academy of
Sciences, Chief Researcher at the Laboratory of
Semiconductor and Dielectric Materials, Kurnakov
Institute of General and Inorganic Chemistry of the
Russian Academy of Sciences, Moscow, Russian
Federation; e-mail: izotov@igic.ras.ru.

Denis E. Korkin, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

Technologist at the Laboratory of
Semiconductor and Dielectric Materials, Kurnakov
Institute of General and Inorganic Chemistry of the
Russian Academy of Sciences, Moscow, Russian
Federation; e-mail: disa5566@yandex.ru

References

Ugai Ya. A. Obshchaya i neorganicheskaya khimiya [General and inorganic chemistry]. Moscow: Vysshaya shkola Publ., 5th ed.; 2007. 526 p.

Kainzbauer P., Richter K.W., Ipser H. Experimental investigation of the binary Mn-Sb phase diagram. Journal of Phase Equilibria and Diffusion. 2016;37(4): 459–468. https://doi.org/10.1007/s11669-016-0470-2

Halla H., Nowotny H., X-ray Investigation in the system manganese-antimony. Zeitschrift für Physikalische Chemie. 1936;34: 141–144. https://doi.org/10.1515/zpch-1936-3409

Binary alloy phase diagrams. Okamoto H., Schlesinger M. E.; Mueller E. M. (eds.). ASM International, vol. 3: 2016. p. 2598. https://doi.org/10.31399/asm.hb.v03.9781627081634

Yamashita T., Takizawa H., Sasaki T., Uheda K., Endo T. Mn3Sb: A new L12-type intermetallic compound synthesized under high-pressure. Journal of Alloys and Compounds. 2016;348(1-2): 220–223. https://doi.org/10.1016/S0925-8388(02)00834-4

Marenkin S. F., Kochura A. V., Izotov A. D., Vasil’ev M. G. Manganese pnictides MnP, MnAs, and MnSb are ferromagnetic semimetals: preparation, structure, and properties. Russian Journal of Inorganic Chemistry. 2018;63(14): 1753–1763. https://doi.org/10.1134/S0036023618140036

Han G. C., Ong C. K., Liew T. Y. F. Magnetic and magneto-optical properties of MnSb films on various substrates. Journal of Magnetism and Magnetic Materials. 1999;192(2): 233–237. https://doi.org/10.1016/S0304-8853(98)00545-9

Teramoto I., Van Run A. M. J. G. The existence region and the magnetic and electrical properties of MnSb. Journal of Physics and Chemistry of Solids. 1968;29: 347–352. https://doi.org/10.1016/0022-3697(68)90080-2

Chen T., Stitius W., Allen J. W., Steward G. R. Magnetic and electric properties of MnSb. AIP Conference Proceedings. 1976;29: 532–535. https://doi.org/10.1063/1.30431

Lyakisheva N. P. Diagrammy sostoyaniya dvoinykh metallicheskikh system [State diagrams of binary metal systems]: Handbook: vol. 3. Moscow: Mashinostroenie Publ.; 2001. 872 p.

Grazhdankina N. P., Medvedeva I. V., Pasheev A. V., Bersenev Yu. S. Magnetic properties of alloys MnSb and Mn1.11Sb after subjection to high pressures and temperatures. Journal of Experimental and Theoretical Physics. 1981;54(3): 564–567. Available at: http://www.jetp.ac.ru/cgi-bin/dn/e_054_03_0564.pdf

Zhang H., Kushvaha S.S., Chen S., Gao X., Wang S. Synthesis and magnetic properties of MnSb nanoparticles on Si-based substrates. Applied Physics Letters. 2007; 90(20): 202503. https://doi.org/10.1063/1.2737908

Marenkin S. F., Izotov A. D., Fedorchenko I. V., Novotortsev V. M. Manufacture of magnetic granular structures in semiconductor-ferromagnet systems. Russian Journal of Inorganic Chemistry. 2015;60(3): 295–300. https://doi.org/10.1134/S0036023615030146

Dmitriev A. I., Talantsev A. D., Koplak O. V., Morgunov R. B. Magnetic fluctuations sorted by magnetic field in MnSb clusters embedded in GaMnSb thin films. Journal of Applied Physics. 2016;119(7): 073905. https://doi.org/10.1063/1.4942005

Hanna T., Yoshida D., Munekata H. Preparation characterization of MnSb–GaAs spin LED. Journal of Crystal Growth. 2011;323(1): 383–386. https://doi.org/10.1016/j.jcrysgro.2010.11.146

Moya X., Kar-Narayan S., Mathur N. Caloric materials near ferroic phase transitions. Journal of Nature Materials. 2014;13(5): 439–450. https://doi.org/10.1038/nmat3951

Burrows C., Dobbie A., Myronov M., Hase T., Wilkins S.,Walker M. Heteroepitaxial growth of ferromagnetic MnSb(0001) films on Ge/Si(111) virtual substrates. Crystal Growth Design. 2013;13(11): 4923-4929. https://doi.org/10.1021/cg4011136

Mousley P. J., Burrows C. W., Ashwin M. J., Takahasi M., Sasaki T., Bell G. R. In situ X-ray diffraction of GaAs/MnSb/Ga(In)As heterostructures. Physica Status Solidi. 2017;254(2): 1600503. https://doi.org/10.1002/pssb.201600503

Matsui T., Ando E., Morii K., Nakayama Y. Development of (001) texture of MnSb in thin films prepared by interdiffusion of Mn/Sb multilayers. Materials Science and Engineering. 1994; B(27): 109– 115. https://doi.org/10.1016/0921-5107(94)90131-7

Dai R., Chen N., Zhang X. W., Peng C. Net-like ferromagnetic MnSb film deposited on porous silicon substrates. Journal of Crystal Growth. 2007;299(1): 142–145. https://doi.org/10.1016/j.jcrysgro.2006.11.132

Kushvaha S. S., Zhang H. L., Yan Z, Wee A. T. S., Wang X. Growth of self-assembled Mn, Sb and MnSb nanostructures on highly oriented pyrolytic graphite. Thin Solid Films. 2012;520(23): 69096915. https://doi.org/10.1016/j.tsf.2012.07.099

Marenkin S. F., Ril A. I., Rabinovich O., Fedorchenko I., Didenko S. MnSb ferromagentic films synthesized by vacuum thermal evaporation. Journal of Physics: Conference Series. 2020;1451: 012022. https://doi.org/10.1088/1742-6596/1451/1/012022

Nesmeyanov A. N. Davlenie para khimicheskikh elementov [Vapor pressure of chemical elements] Moscow: AN SSSR Publ.; 1961. 396 p.

Published
2021-08-17
How to Cite
Jaloliddinzoda, M., Marenkin, S. F., Ril’, A. I., Vasil’ev, M. G., Izotov, A. D., & Korkin, D. E. (2021). Synthesis of bulk crystals and thin films of the ferromagnetic MnSb. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(3), 387-395. https://doi.org/10.17308/kcmf.2021.23/3530
Section
Original articles