Structure and chemical composition of grain boundaries in the magnetic semiconductor GaSb<Mn>

  • Vladimir P. Sanygin Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0002-1261-6895
  • Olga N. Pashkova Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0002-2102-1025
  • Alexander D. Izotov Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation https://orcid.org/0000-0002-4639-3415
Keywords: Magnetic semiconductors, Gallium antimonide, Crystal lattice defects, Magnetic clusters

Abstract

The structure and chemical composition of grain boundaries in GaSb<Mn> magnetic semiconductors have been investigated. We determined that quenching of the GaSb melt with 2% Mn results in the formation of a textured polycrystal (111). The grain boundaries of the texture are formed by split 60 degree dislocations with <110> dislocation lines. Microinclusions based on the ferromagnetic compound MnSb are located on the stacking faults of split dislocations. The chemical compositions of microinclusions differ, but their average composition is close to Mn1.1Sb. The synthesized GaSb<Mn> is a soft ferromagnet with a coercive force of 10 Oe and a magnetic state approaching superparamagnetic

Downloads

Download data is not yet available.

Author Biographies

Vladimir P. Sanygin, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

PhD in Chemistry, senior
research fellow, Laboratory of Semiconductor and
Dielectric Materials, Kurnakov Institute of General and
Inorganic Chemistry of the Russian Academy of
Sciences, Moscow, Russian Federation; e-mail:
sanygin@igic.ras.ru

Olga N. Pashkova, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

PhD in Chemistry, senior
research fellow, Laboratory of Semiconductor and
Dielectric Materials, Kurnakov Institute of General and
Inorganic Chemistry of the Russian Academy of
Sciences, Moscow, Russian Federation; e-mail: olgpashkova@yandex.ru

Alexander D. Izotov, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky prospekt, Moscow 119991, Russian Federation

DSc in Chemistry, Associate
Member of the Russian Academy of Sciences, Chief
Researcher, Laboratory of Semiconductor and
Dielectric Materials, Kurnakov Institute of General and
Inorganic Chemistry of the Russian Academy of
Sciences, Moscow, Russian Federation; e-mail:
izotov@igic.ras.ru

References

Ivanov V. A., Aminov T. G., Novotortsev V. M., Kalinnikov V. T. Spintronics and spintronics materials. Russian Chemical Bulletin. 2004;53(11): 2357-2405. https://doi.org/10.1007/s11172-005-0135-5

Pulzara-Mora С., Pulzara-Mora A., Forero-Pico A., Ayerbe-Samaca M., Marques-Marchan J., Asenjo A., Nemes, N. M., Arenas D., Saez Puche R. Structural, morphological and magnetic properties of GaSbMn/Si(111) thin films prepared by radio frequency magnetron sputtering. Thin Solid Films. 2020;705: 137971. https://doi.org/10.1016/j.tsf.2020.137971

Dmitriev A. I., Kochura A. V., Kuz’menko A. P., Parshina L. S., Novodvorskii O. A., Khramova O. D., Kochura E. P., Vasil’ev A. L., Aronzon B. A. Effect of Heat Treatment on the Dispersion of the Magnetic Anisotropy of MnSb Nanoinclusions Embedded in Thin GaMnSb Films. Physics of the Solid State. 2019;61(4): 523–529. https://doi.org/10.1134/S1063783419040073

Doria-Andrade J., Pulzara-Mora C., Bernal- Correa R., Rosales-Rivera A., Pulzara-Mora Á. Segregation of Mn into GaAsMn thin films prepared by magnetron sputtering. Materia-Rio De Janeiro. 2020;25(4): E-12884. https://doi.org/10.1590/s1517-707620200004.1184

Yokoyama M., Ogawa T., Nazmul A. M., Tanaka M. Large magnetoresistance (> 600 %) of a GaAs : MnAs granular thin film at room temperature Journal of Applied Physics. 2006;99(8): 08D502. https://doi.org/10.1063/1.2151817

Rednic L., Deac I. G., Dorolti E., Coldea M., Rednic V., Neumann M. Magnetic cluster developement in In1−xMnxSb semiconductor alloys. Open Physics. 2010;8(4): 620–627. https://doi.org/10.2478/s11534-009-0140-7

Tran L., Hatami F., Masselink W. T., Herfort J., Trampert A. Distribution of Mn in ferromagnetic (In,Mn)Sb films grown on (0 0 1) GaAs using MBE. Journal of Crystal Growth. 2011;323(1): SI 340–343 (Special Issue). https://doi.org/10.1016/j.jcrysgro.2010.10.127

Overberg M. E., Gila B. P., Thaler G. T., Abernathy C. R., Pearton S. J., Theodoropoulou N. A. et. al. Room temperature magnetism in GaMnP produced by both ion implantation and molecularbeam epitaxy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 2002; 20(3): 969–973. https://doi.org/10.1116/1.1477424

Sobolev N. A., Oliveira M. A., Rubinger R. M., Neves A. J., Carmo M. C., Lesnikov V.P., Podolskii V. V., Danilov Y. A., Demidov E. S., Kakazei G. N. Ferromagnetic resonance and Hall effect characterization of GaMnSb layers. Journal of Superconductivity and Novel Magnetism. 2007;20(6): 399-403. https://doi.org/10.1007/s10948-007-0243-6

Hartmann Th., Lampalzer M., Klar P. J., Stolz W., Heimbrodt W., von Nidda H. A. K., Loidl A., Svistov L. Ferromagnetic resonance studies of (Ga,Mn) As with MnAs clusters. Physica E: Low-dimensional Systems and Nanostructures. 2002;13(2-4): 572–576. https://doi.org/10.1016/s1386-9477(02)00180-7

Chen C., Chen N., Liu L., Li Y., Wu J. Ga1-xMnxSb grown on GaSb substrate by liquid phase epitaxy. Journal of Crystal Growth. 2004;260(1-2): 50–53. https://doi.org/10.1016/j.jcrysgro.2003.08.022

Yoshizawa H., Toyota H., Nakamura S., Yamazaki M., Uchitomi N. Structural and ferromagnetic properties of InMnAs thin films including MnAs nanoclusters grown on InP substrates. Thin Solid Films. 2017;622: 136–141. https://doi.org/10.1016/j.tsf.2016.12.020

Novak J., Dujavova A., Vavra I., Hasenoehrl S., Reiffers M. Magnetic properties of InMnAs nanodots prepared by MOVPE. Journal of Magnetism and Magnetic Materials. 2013;327: 20-23. https://doi.org/10.1016/j.jmmm.2012.09.041

Liu J. D., Hanson M. P., Peters J. A., Wessels B. W. Magnetism and Mn Clustering in (In,Mn)Sb magnetic semiconductors. ACS Applied Materials & Interfaces. 2015;7(43): 24159–24167. https://doi.org/10.1021/acsami.5b07471

Yakovleva E. I., Oveshnikov L. N., Kochura A. V., Lisunov K. G., Lahderanta E., Aronzon B. A. Anomalous Hall effect in the In1-x Mn (x) Sb dilute magnetic semiconductor with MnSb inclusions. JETP Letters. 2015;101(2): 130–135. https://doi.org/10.1134/s0021364015020149

Sanygin V. P., Tishchenko E. A., Shi D. H., Izotov A. D. Concept of impurity-dislocation magnetism in III-V compound semiconductors. Inorganic Materials. 2013;49(1): 6–13. https://doi.org/10.1134/s0020168513010147

Blavette D., Cadel E., Fraczkiewicz A., Menand A. Three-dimensional atomic-scale imaging of impurity to line defects. Science. 1999;286(5448): 2317–2319. https://doi.org/10.1126/science.286.5448.2317

Nechaev Yu. S. Metallic materials for the hydrogen energy industry and main gas pipelines: complex physical problems of aging, embrittlement, and failure. Physics-Uspekhi. 2008;51(7): 681–697. https://doi.org/10.1070/pu2008v051n07abeh006570

Strel’chenko S. S., Lebedev V. V. Soedineniya A3B5[Compounds A3B5] Moscow: Metallurgiya Publ.; 1984. 144 p. (In Russ.)

Fizicheskie velichiny. Spravochnik pod redaktsiei Grigor’eva I. S., Meilikhova E. Z. [Physical quantities. Handbook. I. S. Grigoriev, E.Z. Meilikhov (eds.)]. Moscow: Energoatomizdat Publ.; 1991. 1232 p. (In Russ.)

Osip’yan Yu. A. Elektronnye svoistva dislokatsii v poluprovodnikakh [Electronic properties of dislocations in semiconductors.]. Moscow: Editorial URSS Publ.; 2000. 314 p. (In Russ.)

Hull D. Introduction to dislocations. Oxford, New York: Pergamon Press; 1984. 257 p.

Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik: v 3 t. Kn. 1 [State diagrams of double metal systems: Handbook: In 3 vols. Book 1] / N. P. Lyakisheva (ed.). Moscow: Mashinostroenie Publ; 2001. 872 p. (In Russ.)

Bean C. P., Livingston J. D. Superparamagnetism. Journal of Applied Physics 1959;30: S120. https://doi.org/10.1063/1.2185850

Published
2021-08-17
How to Cite
Sanygin, V. P., Pashkova, O. N., & Izotov, A. D. (2021). Structure and chemical composition of grain boundaries in the magnetic semiconductor GaSb<Mn&gt;. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(3), 413-420. https://doi.org/10.17308/kcmf.2021.23/3533
Section
Original articles

Most read articles by the same author(s)