Photosensitising reactive oxygen species with titanium dioxide nanoparticles decorated with PbS quantum dots

Keywords: Nanoparticles, Titanium dioxide, Quantum dots, Lead sulphide, Photosensitisation, Reactive oxygen species, Photocatalysis

Abstract

    The development of new efficient photocatalysts based on nanostructured materials with a wide range of photosensitivity in visible and near-infra-red regions and high efficiency of reactive oxygen species generation is an important task. The purpose of this project was to establish the possibility of photosensitising the process of generating reactive oxygen species (ROSs) with TiO2 nanoparticles (NPs) decorated with colloidal PbS quantum dots (QDs) passivated with 3-mercaptopropionic acid (3MPA) as well as the possibility of increasing the spectral sensitivity of synthesised nanoheterosystems into the red
region.
    The paper analyses the photocatalytic properties of TiO2 NPs with an anatase structure and average size of 12 nm decorated with colloidal PbS QDs with an average size of 2.7 nm passivated with 3MPA. It also provides structural and spectral substantiation of the formation of TiO2 NPs – PbS/3MPA QDs nanoheterostructures. Absorption and luminescence techniques were used to establish the efficiency of generating various ROSs by TiO2 NPs – PbS/3MPA nanoheterostructures and their individual components under excitation in the UV and visible radiation.
    It was shown that TiO2 NPs decoration with PbS QDs extends the spectral range of sensitivity to the generation of reactive oxygen species in the UV to 1,100 nm. The study revealed an increased efficiency of hydrogen peroxide generation by nanoheterostructures as compared to individual PbS QDs and TiO2 nanoparticles.

Downloads

Download data is not yet available.

Author Biographies

Aleksey S. Perepelitsa, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Associate Professor at the Department of Optics and
Spectroscopy, Voronezh State University (Voronezh,
Russian Federation).

Sergey V. Aslanov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Lecturer of the Department of Optics and Spectroscopy,
Voronezh State University (Voronezh, Russian
Federation).

Oleg V. Ovchinnikov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Full
Professor, Dean of the Faculty of Physics, Head of the
Department of Optics and Spectroscopy, Voronezh
State University (Voronezh, Russian Federation).

Mikhail S. Smirnov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Associate
Professor, Department of Optics and Spectroscopy,
Voronezh State University (Voronezh, Russian
Federation).

Irina G. Grevtseva, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Lecturer at the Department of Optics and Spectroscopy,
Voronezh State University (Voronezh, Russian
Federation).

Anatoly N. Latyshev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Full
Professor, Department of Optics and Spectroscopy,
Voronezh State University (Voronezh, Russian
Federation).

Tamara S. Kondratenko, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.),
Associate Professor, Department of Optics and
Spectroscopy, Voronezh State University (Voronezh,
Russian Federation).

References

Micro and nano technologies, nanotechnology and photocatalysis for environmental applications. M. Tahir, M. Rafique, M. Rafique (eds.). Amsterdam: Elsevier Inc. 2020. 244 p.

Huang F., Yan A., Zhao H. Influences of doping on photocatalytic properties of TiO2 photocatalyst. In: Semiconductor photocatalysis - materials, mechanisms and applications. https://doi.org/10.5772/63234

Li R., Li T., Zhou Q. Impact of titanium dioxide (TiO2) modification on its application to pollution treatment – a review. Catalysts. 2020;10(7): 804. https://doi.org/10.3390/catal10070804

Janczarek M., Kowalska E. On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems. Catalysts. 2017;7(11): 317. https://doi.org/10.3390/catal7110317

Kang I., Wise F. W. Electronic structure and optical properties of PbS and PbSe quantum dots. Journal of the Optical Society of America B. 1997;14:(7): 1632–1646. https://doi.org/10.1364/JOSAB.14.001632

Su G., Liu C., Deng Z., Zhao X., Zhou X. Sizedependent photoluminescence of PbS QDs embedded in silicate glasses. Optical materials express. 2017;7(7): 2194–2207. https://doi.org/10.1364/OME.7.002194

Zhang H., Gao Y., Zhu G., Li B., Gou J., Cheng X. Synthesis of PbS/TiO2 nano-tubes photoelectrode and its enhanced visible light driven photocatalytic performance and mechanism for purification of 4-chlorobenzoic acid. Separation and Purification Technology. 2019;227: 115697. https://doi.org/10.1016/j.seppur.2019.115697

Ratanatawanate C., Tao Y., Balkus K. J. Jr. Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. Journal of Physical Chemistry. C 2009;113(24): 10755–10760. https://doi.org/10.1021/jp903050h

Wang C., Thompson R. L., Ohodnicki P., Baltrus J., Matranga C. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. Journal of Materials Chemistry. 2011;21: 13452. https://doi.org/10.1039/C1JM12367J

Ovchinnikov O. V., Smirnov M. S., Aslanov S. V., Perepelitsa A. S. Luminescent properties of colloidal Ag2S quantum dots for photocatalytic applications. Physics of the Solid State. 2022;64(13): 12054–2061. https://doi.org/10.21883/PSS.2022.13.53973.19s

Ovchinnikov O. V., Smirnov M. S., Perepelitsa A. S., … Hussein A. M. H. Photosensitisation of reactive oxygen species with titanium dioxide nanoparticles decorated with silver sulphide quantum dots. Condensed Matter and Interphases. 2022;24(4): 511–522. https://doi.org/10.17308/kcmf.2022.24/10555

Kubelka P., Munk F. An article on optics of paint layers. Fuer Tekn. Physik. 1931;12: 593-609.

Nosaka Y., Nosaka A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews. 2017;117: 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161

Mohanty J. G., Jaffe J. S., Schulman E. S., Raible D. G. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. Journal of Immunological Methods. 1997;202(2): 133–141. https://doi.org/10.1016/S0022-1759(96)00244-X

Wafi A., Szabó-Bárdos E., Horváth O., Makó E., Jakab M., Zsirka B. Coumarin-based quantification of hydroxyl radicals and other reactive species generated on excited nitrogen-doped TiO2. Journal of Photochemistry and Photobiology A: Chemistry. 2021;404: 112913. https://doi.org/10.1016/j.jphotochem.2020.112913

Herman J., Neal S. L. Efficiency comparison of the imidazole plus RNO method for singlet oxygen detection in biorelevant solvents. Analytical and Bioanalytical Chemistry. 2019;411(20): 5287–5296. https://doi.org/10.1007/s00216-019-01910-2

Sadovnikov S. I., Kozhevnikova N. S., Pushin V. G. , Rempel A. A. Microstructure of nanocrystalline PbS powders and films. Inorganic Materials. 2012;48: 21–27. https://doi.org/10.1134/S002016851201013X

Gusev A. I. Nanomaterials, nanostructures, nanotechnologies*. Moscow: Fizmatlit Publ.; 2005. 416 p. (In Russ.)

Sadovnikov S. I., Rempel A. A. Nonstoichiometric distribution of sulfur atoms in lead sulfide structure. Doklady Physical Chemistry. 2009;428(1): 167–171. https://doi.org/10.1134/S0012501609090024

Kapilashrami M., Zhang Y., Liu Y.-S., Hagfeldt A., Guo J. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chemical Review. 2014;114: 9662–9707. https://doi.org/10.1021/cr5000893

Murphy A. B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical watersplitting. Solar Energy Materials & Solar Cells. 2007;91: 1326–1337. https://doi.org/10.1016/j.solmat.2007.05.005

Nakata K., Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2012;13(3): 169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

Athanasekou C. P., Likodimos V., Falaras P. Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. Journal of Environmental Chemical Engineering. 2018;6(6): 7386–7394. https://doi.org/10.1016/j.jece.2018.07.026

Turrens J. F. Mitochondrial formation of reactive oxygen species. The Journal of Physiology. 2003;552(2): 335-44. https://doi.org/10.1113/jphysiol.2003.049478

Fujishima A., Zhang X., Tryk D. A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports. 2008;63(12): 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

Kohtani S., Yoshioka E., Miyabe H. Photocatalytic hydrogenation on semiconductor particles. In: Hydrogenation. I. Karame (ed.). IntechOpen. 2012. 340 p. https://doi.org/10.5772/45732

Bard A. J., Parsons R., Jordan J. Standart potentials in aqueous solutions. Routledge, 1985. 848 p. https://doi.org/10.1201/9780203738764

Belovolova L.V. Reactive oxygen species in aqueous media (a review). Optics and Spectroscopy. 2020;128: 932–951. https://doi.org/10.1134/S0030400X20070036

Segets D., Lucas J. M., Klupp Taylor R. N., Scheele M., Zheng H., Alivisatos A. P., Peukert W. Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. ACS Nano. 2012,6(10): 9021–9032. https://doi.org/10.1021/nn303130d

Ge J., Jia Q., Liu W., … Wang P. Carbon dots with intristic theranostic properties for bioimaging, redlight- triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo. Advanced Healthcare Materials. 2016;5(6): 665-675. https://doi.org/10.1002/adhm.201500720

Bailón-Ruiz S., Perales-Pérez O. J. Generation of singlet oxygen by water-stable CdSe(S) and Znse(S) quantum dots. Applied Materials Today. 2017;9: 161-166. https://doi.org/10.1016/j.apmt.2017.06.006

Published
2023-05-11
How to Cite
Perepelitsa, A. S., Aslanov, S. V., Ovchinnikov, O. V., Smirnov, M. S., Grevtseva, I. G., Latyshev, A. N., & Kondratenko, T. S. (2023). Photosensitising reactive oxygen species with titanium dioxide nanoparticles decorated with PbS quantum dots. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 25(2), 215-224. https://doi.org/10.17308/kcmf.2023.25/11103
Section
Original articles

Most read articles by the same author(s)