Residual strain evaluation in GaN/AlN multiperiod superlattices grown on SiC/Si

Keywords: GaN, AlN, Superlattice, Raman spectroscopy

Abstract

In our study, we formed a multilayer heterostructure consisting of periodic GaN and AlN layers by means of chloride-hydride epitaxial growth on a hybrid SiC/Si substrate synthesized using the method of the coordinated substitution of atoms.

A comprehensive study of the heterostructure by means of nanoscale mapping of elastic strain demonstrated that in the upper GaN layer the dual-axis strain sxx is minimal (~ –0.12 GPa). There is practically no strain in the superlattices located in the upper part of the heterostructure.

Downloads

Download data is not yet available.

Author Biographies

Pavel V. Seredin, Voronezh State University, Universitetskaya pl. 1, Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Full
Professor, Head of the Department, Department
of Solid State Physics and Nanostructures,
Voronezh State University (Voronezh, Russian
Federation)

Shukrilo Sh. Sharofidinov, Ioffe Institute, 26 Polytechnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–
Math.), Research Fellow, Ioffe Institute (St.
Petersburg, Russian Federation)

Dmitry L. Goloshchapov, Voronezh State University, Universitetskaya pl. 1, Voronezh 394018, Russian Federation

Cand. Sci. (Phys.–
Math.), Assistant Professor, Department of Solid
State Physics and Nanostructures, Voronezh State
University (Voronezh, Russian Federation)

Nikita S. Buylov, Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018, Russian Federation

Cand. Sci. (Phys.–Math.),
Educator, Department of Solid State Physics
and Nanostructures, Voronezh State University
(Voronezh, Russian Federation)

Konstantin A. Eremeev, Ioffe Institute, 26 Polytechnicheskaya st., St. Petersburg 194021, Russian Federation

student, Department of
Solid State Physics and Nanostructures, Voronezh
State University (Voronezh, Russian Federation)

Shaira A. Yusupova, Ioffe Institute, 26 Polytechnicheskaya st., St. Petersburg 194021, Russian Federation

Cand. Sci. (Phys.–Math.),
Researcher, Laboratory of Power Semiconductor
Devices, Department of Solid State Electronics,
Ioffe Institute (St. Petersburg, Russian Federation)

Sergey A. Kukushkin, Institute for Problems in Mechanical Engineering of the Russian Academy of Science, 61 Boljshoy prospekt V.O., St. Petersburg 199178, Russian Federation

Dr. Sci. (Phys.–Math.),
Professor, Head of Laboratory, Institute for
Problems in Mechanical Engineering of the
Russian Academy of Sciences (St. Petersburg,
Russian Federation)

References

Zou C., Zhao Z., Xu M., … Li S. GaN/Gr (2D)/Si (3D) Combined high-performance hot electron transistors. ACS Nano. 2023;17(9): 8262–8270. https://doi.org/10.1021/acsnano.2c12435

Das P., Wu T.-L., Tallur S. Design and analysis of high electron mobility transistor inspired: III-V electro-optic modulator topologies. Semiconductor Science and Technology. 2020;35(9): 095028. https://doi.org/10.1088/1361-6641/ab9ea9

Kohen D., Nguyen X. S., Yadav S., … Fitzgerald E. A. Heteroepitaxial growth of In0.30Ga0.70As highelectron mobility transistor on 200 mm silicon ubstrate using metamorphic graded buffer. AIP Advances. 2016; 6(8): 085106. https://doi.org/10.1063/1.4961025

Jang W.-H., Kim H.-S., Kang M.-J., Cho C.-H., Cha H.-Y. Recessed AlGaN/GaN UV phototransistor. Journal of Semiconductor Technology and Science. 2019;19(2): 184–189. https://doi.org/10.5573/JSTS.2019.19.2.184

Encomendero J., Faria F. A., Islam S. M., … Xing H.G. New tunneling features in polar III-nitride resonant tunneling diodes. Physical Review X. 2017;7(4): 041017. https://doi.org/10.1103/PhysRevX.7.041017

Singh M. M., Siddiqui M. J., Saxena A. Comparative simulation of GaAs and GaN based double barriersresonant tunneling diode. Procedia Computer Science. 2016; 85581–85587. https://doi.org/10.1016/j.procs.2016.05.224

Seredin P. V., Lenshin A. S., Mizerov A. M., Leiste H., Rinke M. Structural, optical and morphological properties of hybrid heterostructures on the basis of GaN grown on compliant substrate por-Si(111). Applied Surface Science. 2019; 4761049–4761060. https://doi.org/10.1016/j.apsusc.2019.01.239

Seredin P. V., Goloshchapov D. L., Lenshin A. S., Mizerov A. M., Zolotukhin D. S. Influence of por-Si sublayer on the features of heteroepitaxial growth and physical properties of In x Ga 1-x N/Si(111) heterostructures with nanocolumn morphology of thin film. Physica E: Low-dimensional Systems and Nanostructures. 2018; 104101–104110. https://doi.org/10.1016/j.physe.2018.07.024

Seredin P. V., Goloshchapov D. L., Arsentyev I. N., Sharofidinov S., Kasatkin I. A., Prutskij T. HVPE fabrication of GaN sub-micro pillars on preliminarily treated Si(001) substrate. Optical Materials. 2021; 117111130. https://doi.org/10.1016/j.optmat.2021.111130

Ansah-Antwi K. K., Soh C. B., Liu H., Chua S. J. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2015;33(6): 061517. https://doi.org/10.1116/1.4933201

Gao N., Chen J., Feng X.,…Kang J. Strain engineering of digitally alloyed AlN/GaN nanorods for far-UVC emission as short as 220 nm. Optical Materials Express. 2021;11(4): 1282. https://doi.org/10.1364/OME.422215

Kuchuk A. V., Kryvyi S., Lytvyn P. M., … Salamo G. J. The peculiarities of strain relaxation in GaN/AlN superlattices grown on vicinal GaN (0001) substrate: Comparative XRD and AFM study. Nanoscale Research Letters. 2016;11(1): 252. https://doi.org/10.1186/s11671-016-1478-6

Seredin P. V., Glotov A. V., Ternovaya V. E., … Tarasov I.S . Effect of silicon on relaxation of the crystal lattice in MOCVD–hydride AlxGa1−xAs:Si/GaAs(100) heterostructures. Semiconductors. 2011;45(4): 481–492. https://doi.org/10.1134/S106378261104021X

Davydov V., Roginskii E., Kitaev Y., … Smirnov M. Phonons in short-period GaN/AlN superlattices: Group-theoretical analysis, ab initio calculations, and Raman spectra. Nanomaterials. 2021;11(2): 286. https://doi.org/10.3390/nano11020286

Sharofidinov Sh. Sh., Kukushkin S. A., Red’kov A. V., Grashchenko A. S., Osipov A. V. Growing III–V semiconductor heterostructures on SiC/Si substrates. Technical Physics Letters. 2019;45(7): 711–713. https://doi.org/10.1134/S1063785019070277

Kukushkin S. A., Sharofidinov Sh. Sh. A new method of growing AlN, GaN, and AlGaN bulk crystals using hybrid SiC/Si substrates. Physics of the Solid State. 2019;61(12): 2342–2347. https://doi.org/10.1134/S1063783419120254

Kukushkin S. A., Osipov A. V. Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films. Journal of Physics D: Applied Physics. 2014;47(31): 313001. https://doi.org/10.1088/0022-3727/47/31/313001

Kukushkin S. A., Osipov A. V. Nanoscale singlecrystal silicon carbide on silicon and unique properties of this material. Inorganic Materials. 2021;57(13): 1319–1339. https://doi.org/10.1134/S0020168521130021

Kukushkin S. A., Osipov A. V. Epitaxial silicon carbide on silicon. Method of coordinated substitution of atoms (a review). Russian Journal of General Chemistry. 2022;92(4): 584–610. https://doi.org/10.1134/S1070363222040028

Olivier A., Wang H., Koke A., Baillargeat D. Gallium nitride nanowires grown by low pressure chemical vapour deposition on silicon substrate. Internat ional Journal of Nanotechno logy. 2014;11(1/2/3/4): 243. https://doi.org/10.1504/IJNT.2014.059826

Borowicz P., Gutt T., Malachowski T. Structural investigation of silicon carbide with micro-Raman spectroscopy. In: 2009 MIXDES-16th International Conference Mixed Design of Integrated Circuits Systems. 2009; 177–180.

Davydov V. Yu., Kitaev Yu. E., Goncharuk I. N., … Evarestov R. A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Physical Review B. 1998;58(19): 12899–12907. https://doi.org/10.1103/PhysRevB.58.12899

Feng Y., Saravade V., Chung T.-F., … Lu N. Strain-stress study of AlxGa1−xN/AlN heterostructures on c-plane sapphire and related optical properties. Scientific Reports. 2019;9(1): 10172. https://doi.org/10.1038/s41598-019-46628-4

Lughi V., Clarke D. R. Defect and stress characterization of AlN films by Raman spectroscopy. Applied Physics Letters. 2006;89(24): 241911. https://doi.org/10.1063/1.2404938

Zeng Y., Ning J., Zhang J., … Wang D. Raman analysis of E2 (High) and A1 (LO) phonon to the stressfree GaN grown on sputtered AlN/graphene buffer layer. Applied Sciences. 2020;10(24): 8814. https://doi.org/10.3390/app10248814

Hushur A., Manghnani M. H., Narayan J. Raman studies of GaN/sapphire thin film heterostructures. Journal of Applied Physics. 2009;106(5): 054317. https://doi.org/10.1063/1.3213370

Published
2024-07-12
How to Cite
Seredin, P. V., Sharofidinov, S. S., Goloshchapov, D. L., Buylov, N. S., Eremeev, K. A., Yusupova, S. A., & Kukushkin, S. A. (2024). Residual strain evaluation in GaN/AlN multiperiod superlattices grown on SiC/Si. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 26(3), 518-525. https://doi.org/10.17308/kcmf.2024.26/12227
Section
Original articles

Most read articles by the same author(s)