Исследования остаточных упругих напряжений в многопериодных сверхрешетках GaN/AlN, выращенных на подложке SiC/Si
Аннотация
Впервые методом хлорид-гидридной эпитаксии на гибридной подложке SiC/Si, синтезированной методом согласованного замещения атомов, сформирована многослойная гетероструктура, состоящая из периодически расположенных слоев GaN и AlN.
Комплексное исследование гетероструктуры с использованием наномасштабного Рамановского картирования упругих напряжений показало, что в верхнем GaN слое величина двухосного напряжения sxx имеет минимальное значение ~ –0.12 ГПа. При этом в сверхрешетках, расположенных в верхней части гетероструктуры, напряжения практически отсутствуют
Скачивания
Литература
Zou C., Zhao Z., Xu M., … Li S. GaN/Gr (2D)/Si (3D) Combined high-performance hot electron transistors. ACS Nano. 2023;17(9): 8262–8270. https://doi.org/10.1021/acsnano.2c12435
Das P., Wu T.-L., Tallur S. Design and analysis of high electron mobility transistor inspired: III-V electro-optic modulator topologies. Semiconductor Science and Technology. 2020;35(9): 095028. https://doi.org/10.1088/1361-6641/ab9ea9
Kohen D., Nguyen X. S., Yadav S., … Fitzgerald E. A. Heteroepitaxial growth of In0.30Ga0.70As highelectron mobility transistor on 200 mm silicon ubstrate using metamorphic graded buffer. AIP Advances. 2016; 6(8): 085106. https://doi.org/10.1063/1.4961025
Jang W.-H., Kim H.-S., Kang M.-J., Cho C.-H., Cha H.-Y. Recessed AlGaN/GaN UV phototransistor. Journal of Semiconductor Technology and Science. 2019;19(2): 184–189. https://doi.org/10.5573/JSTS.2019.19.2.184
Encomendero J., Faria F. A., Islam S. M., … Xing H.G. New tunneling features in polar III-nitride resonant tunneling diodes. Physical Review X. 2017;7(4): 041017. https://doi.org/10.1103/PhysRevX.7.041017
Singh M. M., Siddiqui M. J., Saxena A. Comparative simulation of GaAs and GaN based double barriersresonant tunneling diode. Procedia Computer Science. 2016; 85581–85587. https://doi.org/10.1016/j.procs.2016.05.224
Seredin P. V., Lenshin A. S., Mizerov A. M., Leiste H., Rinke M. Structural, optical and morphological properties of hybrid heterostructures on the basis of GaN grown on compliant substrate por-Si(111). Applied Surface Science. 2019; 4761049–4761060. https://doi.org/10.1016/j.apsusc.2019.01.239
Seredin P. V., Goloshchapov D. L., Lenshin A. S., Mizerov A. M., Zolotukhin D. S. Influence of por-Si sublayer on the features of heteroepitaxial growth and physical properties of In x Ga 1-x N/Si(111) heterostructures with nanocolumn morphology of thin film. Physica E: Low-dimensional Systems and Nanostructures. 2018; 104101–104110. https://doi.org/10.1016/j.physe.2018.07.024
Seredin P. V., Goloshchapov D. L., Arsentyev I. N., Sharofidinov S., Kasatkin I. A., Prutskij T. HVPE fabrication of GaN sub-micro pillars on preliminarily treated Si(001) substrate. Optical Materials. 2021; 117111130. https://doi.org/10.1016/j.optmat.2021.111130
Ansah-Antwi K. K., Soh C. B., Liu H., Chua S. J. Growth optimization and characterization of GaN epilayers on multifaceted (111) surfaces etched on Si(100) substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2015;33(6): 061517. https://doi.org/10.1116/1.4933201
Gao N., Chen J., Feng X.,…Kang J. Strain engineering of digitally alloyed AlN/GaN nanorods for far-UVC emission as short as 220 nm. Optical Materials Express. 2021;11(4): 1282. https://doi.org/10.1364/OME.422215
Kuchuk A. V., Kryvyi S., Lytvyn P. M., … Salamo G. J. The peculiarities of strain relaxation in GaN/AlN superlattices grown on vicinal GaN (0001) substrate: Comparative XRD and AFM study. Nanoscale Research Letters. 2016;11(1): 252. https://doi.org/10.1186/s11671-016-1478-6
Seredin P. V., Glotov A. V., Ternovaya V. E., … Tarasov I.S . Effect of silicon on relaxation of the crystal lattice in MOCVD–hydride AlxGa1−xAs:Si/GaAs(100) heterostructures. Semiconductors. 2011;45(4): 481–492. https://doi.org/10.1134/S106378261104021X
Davydov V., Roginskii E., Kitaev Y., … Smirnov M. Phonons in short-period GaN/AlN superlattices: Group-theoretical analysis, ab initio calculations, and Raman spectra. Nanomaterials. 2021;11(2): 286. https://doi.org/10.3390/nano11020286
Sharofidinov Sh. Sh., Kukushkin S. A., Red’kov A. V., Grashchenko A. S., Osipov A. V. Growing III–V semiconductor heterostructures on SiC/Si substrates. Technical Physics Letters. 2019;45(7): 711–713. https://doi.org/10.1134/S1063785019070277
Kukushkin S. A., Sharofidinov Sh. Sh. A new method of growing AlN, GaN, and AlGaN bulk crystals using hybrid SiC/Si substrates. Physics of the Solid State. 2019;61(12): 2342–2347. https://doi.org/10.1134/S1063783419120254
Kukushkin S. A., Osipov A. V. Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films. Journal of Physics D: Applied Physics. 2014;47(31): 313001. https://doi.org/10.1088/0022-3727/47/31/313001
Kukushkin S. A., Osipov A. V. Nanoscale singlecrystal silicon carbide on silicon and unique properties of this material. Inorganic Materials. 2021;57(13): 1319–1339. https://doi.org/10.1134/S0020168521130021
Kukushkin S. A., Osipov A. V. Epitaxial silicon carbide on silicon. Method of coordinated substitution of atoms (a review). Russian Journal of General Chemistry. 2022;92(4): 584–610. https://doi.org/10.1134/S1070363222040028
Olivier A., Wang H., Koke A., Baillargeat D. Gallium nitride nanowires grown by low pressure chemical vapour deposition on silicon substrate. Internat ional Journal of Nanotechno logy. 2014;11(1/2/3/4): 243. https://doi.org/10.1504/IJNT.2014.059826
Borowicz P., Gutt T., Malachowski T. Structural investigation of silicon carbide with micro-Raman spectroscopy. In: 2009 MIXDES-16th International Conference Mixed Design of Integrated Circuits Systems. 2009; 177–180.
Davydov V. Yu., Kitaev Yu. E., Goncharuk I. N., … Evarestov R. A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Physical Review B. 1998;58(19): 12899–12907. https://doi.org/10.1103/PhysRevB.58.12899
Feng Y., Saravade V., Chung T.-F., … Lu N. Strain-stress study of AlxGa1−xN/AlN heterostructures on c-plane sapphire and related optical properties. Scientific Reports. 2019;9(1): 10172. https://doi.org/10.1038/s41598-019-46628-4
Lughi V., Clarke D. R. Defect and stress characterization of AlN films by Raman spectroscopy. Applied Physics Letters. 2006;89(24): 241911. https://doi.org/10.1063/1.2404938
Zeng Y., Ning J., Zhang J., … Wang D. Raman analysis of E2 (High) and A1 (LO) phonon to the stressfree GaN grown on sputtered AlN/graphene buffer layer. Applied Sciences. 2020;10(24): 8814. https://doi.org/10.3390/app10248814
Hushur A., Manghnani M. H., Narayan J. Raman studies of GaN/sapphire thin film heterostructures. Journal of Applied Physics. 2009;106(5): 054317. https://doi.org/10.1063/1.3213370
Copyright (c) 2024 Конденсированные среды и межфазные границы
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.