Photoluminescent properties of porous silicon nanoparticles: synthesis, characterization, and cellular imaging

  • Darya A. Nazarovskaia Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation https://orcid.org/0000-0001-8151-9602
  • Sergey Yu. Turishchev Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0003-3320-1979
  • Sofia S. Titova Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation https://orcid.org/0000-0001-6860-401X
  • Artur A. Shatov Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation
  • Pyotr A. Tyurin-Kuzmin Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya st., Pushchino 142290, Russian Federation https://orcid.org/0000-0002-1901-1637
  • Liubov A. Osminkina Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya st., Pushchino 142290, Russian Federation https://orcid.org/0000-0001-7485-0495
Keywords: Porous silicon, Lyophilization, Photoluminescence, XANES, Raman scattering, Bioimaging

Abstract

Purpose: This study investigates the stability of photoluminescent (PL) properties of microporous silicon nanoparticles (μpSi-NPs) synthesized by electrochemical etching of monocrystalline silicon followed by lyophilization.

Experimental: Structural analysis revealed a highly porous architecture with < 2-nm pores and silicon nanocrystals (nc-Si) with an average size of 3–5 nm. Fourier-transform infrared spectroscopy confirmed the presence of Si-O-Si bonds, indicating surface oxidation of nc-Si. PL studies demonstrated a broad emission band peaking at 685 nm, attributed to exciton recombination in nc-Si. After 5 months of storage, the PL peak shifted to 655 nm, reflecting oxidation-induced size reduction of nc-Si. Raman spectra showed a 1.5 cm–¹ shift of the Si phonon peak along with spectral broadening, evidencing phonon confinement and partial amorphization. XANES analysis further confirmed increased suboxide content and structural disorder.

Conclusions: Biological experiments demonstrated the biocompatibility of μpSi-NPs and retention of their PL activity, highlighting their potential for biomedical applications such as bioimaging and biosensing

Downloads

Download data is not yet available.

Author Biographies

Darya A. Nazarovskaia, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation

postgraduate Student, Faculty of Physics, Lomonosov Moscow State University (Moscow, Russian Federation)

Sergey Yu. Turishchev, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Dr. Sci. (Phys.–Math.), Head of the Department of General Physics and Physical Materials Science, Physics Department, Voronezh State University (Voronezh, Russian Federation)

Sofia S. Titova, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Lecturer, Department of General Physics and Physical Materials Science, Physics Department, Voronezh State University (Voronezh, Russian Federation)

Artur A. Shatov, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation

student, Faculty of Physics, Lomonosov Moscow State University (Moscow, Russian Federation)

Pyotr A. Tyurin-Kuzmin, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya st., Pushchino 142290, Russian Federation

Dr. Sci. (Biology), Associate Professor, Faculty of Medicine, Lomonosov Moscow State University (Moscow, Russian Federation); Institute for Biological Instrumentation of the Russian Academy of Sciences (Pushchino, Russian Federation)

Liubov A. Osminkina, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation; Institute for Biological Instrumentation of the Russian Academy of Sciences, 7 Institutskaya st., Pushchino 142290, Russian Federation

Cand. Sci. (Phys.–Math.), Leading Researcher, Faculty of Physics, Lomonosov Moscow State University (Moscow, Russian Federation); Institute for Biological Instrumentation of the Russian Academy of Sciences (Pushchino, Russian Federation)

References

Cullis A. G., Canham L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature. 1991;353(6342): 335–338. https://doi.org/10.1038/353335a0

Lauerhaas J. M., Sailor M. J. Chemical modification of the photoluminescence quenching of porous silicon. Science. 1993;261(5128): 1567–1568. https://doi.org/10.1126/science.261.5128.1567

Gongalsky M. B., Kargina J. V., Cruz J. F., … Sailor M. J. Formation of Si/SiO2 luminescent quantum dots from mesoporous silicon by sodium tetraborate/citric acid oxidation treatment. Frontiers in Chemistry. 2019;7: 165. https://doi.org/10.3389/fchem.2019.00165

Salonen J., Mäkilä E. Thermally carbonized porous silicon and its recent applications. Advanced Materials. 2018;30(24): 1703819. https://doi.org/10.1002/adma.201703819

Erogbogbo F., Yong K. T., Roy I., Xu G., Prasad P. N., Swihart M. T. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano. 2008;2(5): 873–878. https://doi.org/10.1021/nn700319z

Morozova S., Alikina M., Vinogradov A., Pagliaro M. Silicon quantum dots: synthesis, encapsulation, and application in light-emitting diodes. Frontiers in Chemistry. 2020;8: 191. https://doi.org/10.3389/fchem.2020.00191

Sobina I. O., Tyurin-Kuzmin P. A., Pervushin N. V., … Osminkina L. A. Gold-modified silicon microneedles for real-time SERS analysis and drug delivery at single-cell resolution. Microchemical Journal. 2025;2015: 114178. https://doi.org/10.1016/j.microc.2025.114178

Nazarovskaia D. A., Domnin P. A., Gyuppenen O. D., … Osminkina L. A. Advanced bacterial detection with SERS-active gold-and silver-coated porous silicon nanowires. Bulletin of the Russian Academy of Sciences: Physics. 2023;87(Suppl 1): S41–S46. https://doi.org/10.1134/S1062873823704385

Waggoner L. E., Kang J., Zuidema J. M., … Kwon E. J. Porous silicon nanoparticles targeted to the extracellular matrix for therapeutic protein delivery in traumatic brain injury. Bioconjugate Chemistry. 2022;33(9): 1685–1697. https://doi.org/10.1021/acs.bioconjchem.2c00305

Osminkina L. A., Timoshenko V. Y. Porous silicon as a sensitizer for biomedical applications. Open Material Sciences. 2016; 3(1). https://doi.org/10.1515/mesbi-2016-0005

Zeng Q., Han K., Zheng C., … Lu T. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing. Journal of Colloid and Interface Science. 2022;607: 1239–1252. https://doi.org/10.1016/j.jcis.2021.09.092

Santos H. A. (ed.). Porous silicon for biomedical applications (second edition). The United Kingdom: Woodhead Publishing; 2021. https://doi.org/10.1016/b978-0-12-821677-4.00007-0

Cullis A. G., Canham L. T., Calcott P. D. J. The structural and luminescence properties of porous silicon. Journal of Applied Physics. 1997;82(3): 909–965. https://doi.org/10.1063/1.366536

Skorb E. V., Andreeva D. V., Möhwald H. Generation of a porous luminescent structure through ultrasonically induced pathways of silicon modification. Angewandte Chemie International Edition. 2012;21(51): 5138–5142. https://doi.org/10.1002/anie.201105084

Sailor M. J. (ed.). Porous silicon in practice: preparation, characterization and applications. Weinheim, Germany: Wiley-VCH Verlag & Co.; 2011. https://doi.org/10.1002/9783527641901

Park J. H., Gu L., von Maltzahn G., Ruoslahti E., Bhatia S. N., Sailor M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials. 2009;8: 331–336. https://doi.org/10.1038/nmat2398

Gu L., Hall D. J., Qin Z., … Sailor M. J. In vivo timegated f luorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nature communications. 2013;4(1): 2326. https://doi.org/10.1038/ncomms3326

Shatskaia M. G., Nazarovskaia D. A., Gonchar K. A., … Osminkina L. A. Photoluminescent porous silicon nanowires as contrast agents for bioimaging. Condensed Matter and Interphases. 2024;26(1): 161–167. https://doi.org/10.17308/kcmf.2024.26/11819

Kelly T. L., Gao T., Sailor M. J. Carbon and carbon/silicon composites templated in rugate filters for the adsorption and detection of organic vapors. Advanced Materials. 2011;15(23): 1776–1781. https://doi.org/10.1002/adma.201004142

Amato G., Brunetto N., Parisini A. Characterisation of freeze-dried porous silicon. Thin Solid Films. 1997;297(1-2): 73-78. https://doi.org/10.1016/S0040-6090(96)09412-6

Koyuda D. A., Titova S. S., Tsurikova U. A., … Turishchev S. Yu. Composition and electronic structure of porous silicon nanoparticles after oxidation under air-or freeze-drying conditions. Materials Letters. 2022; 312: 131608. https://doi.org/10.1016/j.matlet.2021.131608

Kim D., Kang J., Wang T., … Sailor M. J. Twophoton in vivo imaging with porous silicon nanoparticles. Advanced materials. 2017;29(39): 1703309. https://doi.org/10.1002/adma.201703309

Stohr J. (ed.). NEXAFS Spectroscopy. Berlin, Germany: Springer International Publishing; 1996.

Bunker G. (ed.). Introduction to XAFS. Cambridge, the United Kingdom: Cambridge University Press; 2010.

Barranco A., Yubero F., Espinos J. P., Groening P., Gonzalez-Elipe A. R. Electronic state characterization of SiOx thin films prepared by evaporation. Journal of Applied Physics. 2005; 97: 113714. https://doi.org/10.1063/1.1927278

Liu L., Sham T. K. The effect of thermal oxidation on the luminescence properties of nanostructured silicon. Small. 2012;8: 2371–2380. https://doi.org/10.1002/smll.201200175

Turishchev S. Yu., Parinova E. V., Pisliaruk A. K., … Sivakov V. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientific Reports. 2019;9: 8066. https://doi.org/10.1038/s41598-019-44555-y

Parinova E. V., Fedotov A. K., Koyuda D. А., … Turishchev S. Y. The composite structures based on nickel rods in the matrix of silicon dioxide formation peculiarities study using synchrotron XANES in electrons and photons yield registration modes. Condensed Matter and Interphases.2019;21(1): 116–125. https://doi.org/10.17308/kcmf.2019.21/726

Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G. Nano PES photoelectron beamline of the Kurchatov Synchrotron Radiation Source. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021;15: 1039–1044. https://doi.org/10.1134/S1027451021050335

Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H. Sampling depth of total electron and fluorescence measurements in Si L- and K-edge absorption spectroscopy. Applied Surface Science. 1996; 99(4): 303–312. https://doi.org/10.1016/0169-4332(96)00454-0

Erbil A., Cargill III G. S., Frahm R., Boehme R. F. Total-electron-yield current measurements for nearsurface extended X-ray-absorption fine structure. Physical Review B. 1988;37: 2450–2464. https://doi.org/10.1103/PhysRevB.37.2450

Mushahary D., Spittler A., Kasper C., Weber V., Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A. 2018;93(1): 19–31. https://doi.org/10.1002/cyto.a.23242

Kulebyakin K., Tyurin-Kuzmin P., Sozaeva L., … Vorontsova M. Dynamic balance between pth1rdependent signal cascades determines its pro-or antiosteogenic effects on MSC. Cells. 2022;11(21): 3519. https://doi.org/10.3390/cells11213519

Kulebyakin K., Tyurin-Kuzmin P., Efimenko A., … Tkachuk V. Decreased insulin sensitivity in elomeraseimmortalized mesenchymal stem cells affects efficacy and outcome of adipogenic differentiation in vitro. Frontiers in Cell and Developmental Biology. 2021;9: 662078. https://doi.org/10.3389/fcell.2021.662078

Turishchev S. Yu., Koyuda D. A., Terekhov V. A., … Domashevskaya E. P. Electronic structure and composition of the surface layers of the multilayer nanoperiodical structures a-Si/ZrO2 and a-SiOx/ZrO2 according to synchrotron studies. Condensed Matter and Interphases. 2016;18(4): 558–567. (Ib Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=27474862

Watanabe M., Ejima T., Miyata N., Imazono T., Yanagihara M. Studies of multilayer structure in depth direction by soft X-ray spectroscopy. Nuclear Science and Techniques. 2006;17(5): 257–267. https://doi.org/10.1016/S1001-8042(06)60048-1

Turishchev S. Y., Terekhov V. A., Koyuda D. A., … Mashin A. I. Synchrotron investigation of the multilayer nanoperiodical Al2O3/SiO/Al2O3/SiO:Si structure formation. Surface and Interface Analysis. 2012;44(8): 1182-1186. https://doi.org/10.1002/sia.4868

Turishchev S. Y., Parinova E. V., Pisliaruk A. K., … Sivakov V. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientific Reports. 2019;9(1): 8066. https://doi.org/10.1038/s41598-019-44555-y

Engelhorn K., Recoules V., Cho B. I., … Heimann P. A. Electronic structure of warm dense silicon dioxide. Physical Review B. 2015;91(21): 214305. https://doi.org/10.1103/PhysRevB.91.214305

Zi J., Zhang K., Xie X. Comparison of models for Raman spectra of Si nanocrystals. Physical Review B. 1997;55(15): 9263. https://doi.org/10.1103/PhysRevB.55.9263

Canham L. T. (ed.). Handbook of porous silicon. Berlin, Germany: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-71381-6

Published
2025-09-25
How to Cite
Nazarovskaia, D. A., Turishchev, S. Y., Titova, S. S., Shatov, A. A., Tyurin-Kuzmin, P. A., & Osminkina, L. A. (2025). Photoluminescent properties of porous silicon nanoparticles: synthesis, characterization, and cellular imaging. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 27(3), 422-432. https://doi.org/10.17308/kcmf.2025.27/13181
Section
Original articles

Most read articles by the same author(s)