Фотолюминесцентные свойства наночастиц пористого кремния: синтез, характеризация и визуализация в клетках

  • Дарья Андреевна Назаровская ФГОУ ВО «Московский государственный университет им. М. В. Ломоносова», физический факультет, Ленинские Горы, 1, 2, Москва 119991, Российская Федерация https://orcid.org/0000-0001-8151-9602
  • Сергей Юрьевич Турищев ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0003-3320-1979
  • София Сергеевна Титова ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0001-6860-401X
  • Артур Анатольевич Шатов ФГОУ ВО «Московский государственный университет им. М. В. Ломоносова», физический факультет, Ленинские Горы, 1, 2, Москва 119991, Российская Федерация
  • Петр Алексеевич Тюрин-Кузьмин ФГОУ ВО «Московский государственный университет им. М. В. Ломоносова», физический факультет, Ленинские Горы, 1, 2, Москва 119991, Российская Федерация; Институт биологического приборостроения Российской академии наук, ул. Институтская, 7, Пущино 142290, Российская Федерация https://orcid.org/0000-0002-1901-1637
  • Любовь Андреевна Осминкина ФГОУ ВО «Московский государственный университет им. М. В. Ломоносова», физический факультет, Ленинские Горы, 1, 2, Москва 119991, Российская Федерация; Институт биологического приборостроения Российской академии наук, ул. Институтская, 7, Пущино 142290, Российская Федерация https://orcid.org/0000-0001-7485-0495
Ключевые слова: пористый кремний, лиофильная сушка, фотолюминесценция, XANES, комбинационное рассеяние, биовизуализация

Аннотация

Цель статьи: В данной работе исследована стабильность фотолюминесцентных (ФЛ) свойств наночастиц микропористого кремния (μПК-НЧ), синтезированного методом электрохимического травления монокристаллического кремния и обработанного методом лиофильной сушки.

Экспериментальная часть: Структурный анализ показал высокопористую архитектуру образца с 2-нм порами и нанокристаллами кремния (нк-Si) размером 3–5 нм. ИК-Фурье спектроскопия выявила наличие Si–O–Si связей, что свидетельствует о поверхностном окислении нк-Si. ФЛ исследования продемонстрировали широкую полосу излучения с максимумом при 685 нм, обусловленную рекомбинацией экситонов в нк-Si. После 5 месяцев хранения спектр ФЛ сместился в коротковолновую область (655 нм) вследствие уменьшения размера нк-Si из-за окисления. Спектры комбинационного рассеяния света показали сдвиг на 1.5 см-1, связанный с ограничением фононов, а также уширение спектра и частичную аморфизацию нк-Si. XANES анализ подтвердил увеличение содержания субоксидов и частичную аморфизацию структуры.

Выводы: Биологические эксперименты показали биосовместимость μПК и сохранение их ФЛ свойств, что подчеркивает их перспективность для биомедицинских приложений, таких как биовизуализация и биосенсорика

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Дарья Андреевна Назаровская, ФГОУ ВО «Московский государственный университет им. М. В. Ломоносова», физический факультет, Ленинские Горы, 1, 2, Москва 119991, Российская Федерация

аспирант, физический факультет, Московский государственный университет им. М. В. Ломоносова (Москва, Российская Федерация)

Сергей Юрьевич Турищев, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. ф.-м. н., заведующий кафедрой общей физики и физического материаловедения, физический факультет, Воронежский государственный университет (Воронеж, Российская Федерация)

София Сергеевна Титова, ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

преподаватель кафедры общей физики и физического материаловедения, физический факультет, Воронежский государственный университет (Воронеж, Российская Федерация)

Артур Анатольевич Шатов, ФГОУ ВО «Московский государственный университет им. М. В. Ломоносова», физический факультет, Ленинские Горы, 1, 2, Москва 119991, Российская Федерация

студент, физический факультет, Московский государственный университет
им. М. В. Ломоносова (Москва, Российская Федерация)

Петр Алексеевич Тюрин-Кузьмин, ФГОУ ВО «Московский государственный университет им. М. В. Ломоносова», физический факультет, Ленинские Горы, 1, 2, Москва 119991, Российская Федерация; Институт биологического приборостроения Российской академии наук, ул. Институтская, 7, Пущино 142290, Российская Федерация

д. б. н., доцент, факультет фундаментальной медицины, Московский государственный университет им. М. В. Ломоносова (Москва, Российская Федерация); институт Биологического приборостроения РАН (г. Пущино, Российская Федерация)

Любовь Андреевна Осминкина, ФГОУ ВО «Московский государственный университет им. М. В. Ломоносова», физический факультет, Ленинские Горы, 1, 2, Москва 119991, Российская Федерация; Институт биологического приборостроения Российской академии наук, ул. Институтская, 7, Пущино 142290, Российская Федерация

к. ф.-м. н., вед. н. с., физический факультет, Московский государственный университет им. М. В. Ломоносова (Москва, Российская Федерация); институт Биологического приборостроения РАН (г. Пущино, Российская Федерация)

Литература

Cullis A. G., Canham L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature. 1991;353(6342): 335–338. https://doi.org/10.1038/353335a0

Lauerhaas J. M., Sailor M. J. Chemical modification of the photoluminescence quenching of porous silicon. Science. 1993;261(5128): 1567–1568. https://doi.org/10.1126/science.261.5128.1567

Gongalsky M. B., Kargina J. V., Cruz J. F., … Sailor M. J. Formation of Si/SiO2 luminescent quantum dots from mesoporous silicon by sodium tetraborate/citric acid oxidation treatment. Frontiers in Chemistry. 2019;7: 165. https://doi.org/10.3389/fchem.2019.00165

Salonen J., Mäkilä E. Thermally carbonized porous silicon and its recent applications. Advanced Materials. 2018;30(24): 1703819. https://doi.org/10.1002/adma.201703819

Erogbogbo F., Yong K. T., Roy I., Xu G., Prasad P. N., Swihart M. T. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano. 2008;2(5): 873–878. https://doi.org/10.1021/nn700319z

Morozova S., Alikina M., Vinogradov A., Pagliaro M. Silicon quantum dots: synthesis, encapsulation, and application in light-emitting diodes. Frontiers in Chemistry. 2020;8: 191. https://doi.org/10.3389/fchem.2020.00191

Sobina I. O., Tyurin-Kuzmin P. A., Pervushin N. V., … Osminkina L. A. Gold-modified silicon microneedles for real-time SERS analysis and drug delivery at single-cell resolution. Microchemical Journal. 2025;2015: 114178. https://doi.org/10.1016/j.microc.2025.114178

Nazarovskaia D. A., Domnin P. A., Gyuppenen O. D., … Osminkina L. A. Advanced bacterial detection with SERS-active gold-and silver-coated porous silicon nanowires. Bulletin of the Russian Academy of Sciences: Physics. 2023;87(Suppl 1): S41–S46. https://doi.org/10.1134/S1062873823704385

Waggoner L. E., Kang J., Zuidema J. M., … Kwon E. J. Porous silicon nanoparticles targeted to the extracellular matrix for therapeutic protein delivery in traumatic brain injury. Bioconjugate Chemistry. 2022;33(9): 1685–1697. https://doi.org/10.1021/acs.bioconjchem.2c00305

Osminkina L. A., Timoshenko V. Y. Porous silicon as a sensitizer for biomedical applications. Open Material Sciences. 2016; 3(1). https://doi.org/10.1515/mesbi-2016-0005

Zeng Q., Han K., Zheng C., … Lu T. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing. Journal of Colloid and Interface Science. 2022;607: 1239–1252. https://doi.org/10.1016/j.jcis.2021.09.092

Santos H. A. (ed.). Porous silicon for biomedical applications (second edition). The United Kingdom: Woodhead Publishing; 2021. https://doi.org/10.1016/b978-0-12-821677-4.00007-0

Cullis A. G., Canham L. T., Calcott P. D. J. The structural and luminescence properties of porous silicon. Journal of Applied Physics. 1997;82(3): 909–965. https://doi.org/10.1063/1.366536

Skorb E. V., Andreeva D. V., Möhwald H. Generation of a porous luminescent structure through ultrasonically induced pathways of silicon modification. Angewandte Chemie International Edition. 2012;21(51): 5138–5142. https://doi.org/10.1002/anie.201105084

Sailor M. J. (ed.). Porous silicon in practice: preparation, characterization and applications. Weinheim, Germany: Wiley-VCH Verlag & Co.; 2011. https://doi.org/10.1002/9783527641901

Park J. H., Gu L., von Maltzahn G., Ruoslahti E., Bhatia S. N., Sailor M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials. 2009;8: 331–336. https://doi.org/10.1038/nmat2398

Gu L., Hall D. J., Qin Z., … Sailor M. J. In vivo timegated f luorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nature communications. 2013;4(1): 2326. https://doi.org/10.1038/ncomms3326

Shatskaia M. G., Nazarovskaia D. A., Gonchar K. A., … Osminkina L. A. Photoluminescent porous silicon nanowires as contrast agents for bioimaging. Condensed Matter and Interphases. 2024;26(1): 161–167. https://doi.org/10.17308/kcmf.2024.26/11819

Kelly T. L., Gao T., Sailor M. J. Carbon and carbon/silicon composites templated in rugate filters for the adsorption and detection of organic vapors. Advanced Materials. 2011;15(23): 1776–1781. https://doi.org/10.1002/adma.201004142

Amato G., Brunetto N., Parisini A. Characterisation of freeze-dried porous silicon. Thin Solid Films. 1997;297(1-2): 73-78. https://doi.org/10.1016/S0040-6090(96)09412-6

Koyuda D. A., Titova S. S., Tsurikova U. A., … Turishchev S. Yu. Composition and electronic structure of porous silicon nanoparticles after oxidation under air-or freeze-drying conditions. Materials Letters. 2022; 312: 131608. https://doi.org/10.1016/j.matlet.2021.131608

Kim D., Kang J., Wang T., … Sailor M. J. Twophoton in vivo imaging with porous silicon nanoparticles. Advanced materials. 2017;29(39): 1703309. https://doi.org/10.1002/adma.201703309

Stohr J. (ed.). NEXAFS Spectroscopy. Berlin, Germany: Springer International Publishing; 1996.

Bunker G. (ed.). Introduction to XAFS. Cambridge, the United Kingdom: Cambridge University Press; 2010.

Barranco A., Yubero F., Espinos J. P., Groening P., Gonzalez-Elipe A. R. Electronic state characterization of SiOx thin films prepared by evaporation. Journal of Applied Physics. 2005; 97: 113714. https://doi.org/10.1063/1.1927278

Liu L., Sham T. K. The effect of thermal oxidation on the luminescence properties of nanostructured silicon. Small. 2012;8: 2371–2380. https://doi.org/10.1002/smll.201200175

Turishchev S. Yu., Parinova E. V., Pisliaruk A. K., … Sivakov V. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientific Reports. 2019;9: 8066. https://doi.org/10.1038/s41598-019-44555-y

Parinova E. V., Fedotov A. K., Koyuda D. А., … Turishchev S. Y. The composite structures based on nickel rods in the matrix of silicon dioxide formation peculiarities study using synchrotron XANES in electrons and photons yield registration modes. Condensed Matter and Interphases.2019;21(1): 116–125. https://doi.org/10.17308/kcmf.2019.21/726

Lebedev A. M., Menshikov K. A., Nazin V. G., Stankevich V. G., Tsetlin M. B., Chumakov R. G. Nano PES photoelectron beamline of the Kurchatov Synchrotron Radiation Source. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021;15: 1039–1044. https://doi.org/10.1134/S1027451021050335

Kasrai M., Lennard W. N., Brunner R. W., Bancroft G. M., Bardwell J. A., Tan K. H. Sampling depth of total electron and fluorescence measurements in Si L- and K-edge absorption spectroscopy. Applied Surface Science. 1996; 99(4): 303–312. https://doi.org/10.1016/0169-4332(96)00454-0

Erbil A., Cargill III G. S., Frahm R., Boehme R. F. Total-electron-yield current measurements for nearsurface extended X-ray-absorption fine structure. Physical Review B. 1988;37: 2450–2464. https://doi.org/10.1103/PhysRevB.37.2450

Mushahary D., Spittler A., Kasper C., Weber V., Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A. 2018;93(1): 19–31. https://doi.org/10.1002/cyto.a.23242

Kulebyakin K., Tyurin-Kuzmin P., Sozaeva L., … Vorontsova M. Dynamic balance between pth1rdependent signal cascades determines its pro-or antiosteogenic effects on MSC. Cells. 2022;11(21): 3519. https://doi.org/10.3390/cells11213519

Kulebyakin K., Tyurin-Kuzmin P., Efimenko A., … Tkachuk V. Decreased insulin sensitivity in elomeraseimmortalized mesenchymal stem cells affects efficacy and outcome of adipogenic differentiation in vitro. Frontiers in Cell and Developmental Biology. 2021;9: 662078. https://doi.org/10.3389/fcell.2021.662078

Turishchev S. Yu., Koyuda D. A., Terekhov V. A., … Domashevskaya E. P. Electronic structure and composition of the surface layers of the multilayer nanoperiodical structures a-Si/ZrO2 and a-SiOx/ZrO2 according to synchrotron studies. Condensed Matter and Interphases. 2016;18(4): 558–567. (Ib Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=27474862

Watanabe M., Ejima T., Miyata N., Imazono T., Yanagihara M. Studies of multilayer structure in depth direction by soft X-ray spectroscopy. Nuclear Science and Techniques. 2006;17(5): 257–267. https://doi.org/10.1016/S1001-8042(06)60048-1

Turishchev S. Y., Terekhov V. A., Koyuda D. A., … Mashin A. I. Synchrotron investigation of the multilayer nanoperiodical Al2O3/SiO/Al2O3/SiO:Si structure formation. Surface and Interface Analysis. 2012;44(8): 1182-1186. https://doi.org/10.1002/sia.4868

Turishchev S. Y., Parinova E. V., Pisliaruk A. K., … Sivakov V. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Scientific Reports. 2019;9(1): 8066. https://doi.org/10.1038/s41598-019-44555-y

Engelhorn K., Recoules V., Cho B. I., … Heimann P. A. Electronic structure of warm dense silicon dioxide. Physical Review B. 2015;91(21): 214305. https://doi.org/10.1103/PhysRevB.91.214305

Zi J., Zhang K., Xie X. Comparison of models for Raman spectra of Si nanocrystals. Physical Review B. 1997;55(15): 9263. https://doi.org/10.1103/PhysRevB.55.9263

Canham L. T. (ed.). Handbook of porous silicon. Berlin, Germany: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-71381-6

Опубликован
2025-09-25
Как цитировать
Назаровская, Д. А., Турищев, С. Ю., Титова, С. С., Шатов, А. А., Тюрин-Кузьмин, П. А., & Осминкина, Л. А. (2025). Фотолюминесцентные свойства наночастиц пористого кремния: синтез, характеризация и визуализация в клетках. Конденсированные среды и межфазные границы, 27(3), 422-432. https://doi.org/10.17308/kcmf.2025.27/13181
Раздел
Оригинальные статьи

Наиболее читаемые статьи этого автора (авторов)