TSF-MOCVD – a novel technique for chemical vapour deposition on oxide thin films and layered heterostructures

  • Andrey R. Kaul Lomonosov Moscow State Univеrsity, 1 Leninskie Gory, Moscow 119991, Russian Federation https://orcid.org/0000-0002-3582-3467
  • Roy R. Nygaard Lomonosov Moscow State Univеrsity, 1 Leninskie Gory, Moscow 119991, Russian Federation https://orcid.org/0000-0002-2296-8069
  • Vadim Yu. Ratovskiy Lomonosov Moscow State Univеrsity, 1 Leninskie Gory, Moscow 119991, Russian Federation https://orcid.org/0000-0003-1657-110X
  • Alexander L. Vasiliev National Research Center “Kurchatov University”, 1 pl. Akademika Kurchatova, Moscow 123182, Russian Federation; Shubnikov Crystallography Institute of the Russian Academy of Sciences, 59 Leninskiy prospect, Moscow 119333, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutskiy Pereulok, Moscow Region, Dolgoprudny, 141701, Russian Federation https://orcid.org/0000-0001-7884-4180
Keywords: Thread-solution feed, TSF, MOCVD, Epitaxy, Thin films, Heterostructures

Abstract

A new principle for supplying volatile precursors to MOCVD gas-phase chemical deposition systems is proposed, based on a two-stage evaporation of an organic solution of precursors from a soaked cotton thread, which passes sequentially through the zones of evaporation of the solvent and precursors. The technological capabilities of TSF-MOCVD (Thread-Solution Feed MOCVD) are demonstrated based on examples of obtaining thin epitaxial films of СеО2, h-LuFeO3 and thin-film heterostructures β-Fe2O3/h-LuFeO3. The results of studying the obtained films by X-ray diffraction, energy dispersive X-ray
analysis, and high- and low-resolution transmission microscopy are presented. Using the TSF module, one can finely vary the crystallisation conditions, obtaining coatings of the required degree of crystallinity, as  evidenced by the obtained dependences of the integral width of the h-LuFeO3 reflection on the film growth rate. Based on the TEM and XRD data, it was concluded that β-Fe2O3 grows epitaxially over the h-LuFeO3 layer. Thus, using TSF-MOCVD, one can flexibly change the composition of layered heterostructures and obtain highly crystalline epitaxial films with a clear interface in a continuous deposition process

Downloads

Download data is not yet available.

Author Biographies

Andrey R. Kaul, Lomonosov Moscow State Univеrsity, 1 Leninskie Gory, Moscow 119991, Russian Federation

DSc in Chemistry, Full Professor at
the Chair of Inorganic Chemistry, Lomonosov Moscow
State University, Moscow, Russian Federation;
arkaul@mail.ru

Roy R. Nygaard, Lomonosov Moscow State Univеrsity, 1 Leninskie Gory, Moscow 119991, Russian Federation

Junior Research Fellow at the Chair
of Inorganic Chemistry, Lomonosov Moscow State
University, Moscow, Russian Federation; e-mail:
rnygaard@mail.ru

Vadim Yu. Ratovskiy, Lomonosov Moscow State Univеrsity, 1 Leninskie Gory, Moscow 119991, Russian Federation

student at the Higher School
of Material Science, Lomonosov Moscow State
University, Moscow, Russian Federation; e-mail:
vratovskiy@bk.ru

Alexander L. Vasiliev, National Research Center “Kurchatov University”, 1 pl. Akademika Kurchatova, Moscow 123182, Russian Federation; Shubnikov Crystallography Institute of the Russian Academy of Sciences, 59 Leninskiy prospect, Moscow 119333, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutskiy Pereulok, Moscow Region, Dolgoprudny, 141701, Russian Federation

PhD in Physics and
Mathematics, Associate Professor at the Faculty of
NBICS, Moscow Institute of Physics and Technology,
Moscow, Russian Federation; email: a.vasiliev56@gmail.com

References

Blocher J. Coating by сhemical vapor deposition (CVD). SAE Technical Paper Series. 1973;82: 1780–6. https://doi.org/10.4271/730543

Pierson H. Handbook of chemical vapor deposition. 2nd ed. Noyes Publications; 1999. 506 p. https://doi.org/10.1016/B978-081551432-9.50005-X

Syrkin V. G. CVD- metod. Khimicheskaya parofaznaya matellizatsiya [CVD-method of chemical vapor-phase metallization]. Nauka Publ.; 2000. 495 p. (In Russ.)

Akchurin R. H., Marmalyuk А. А. MOS-gidridnaya epitaksiya v tekhnologii materialov fotoniki i elektroniki [МОС-hydrid epitaxy in the technology of materials for photonics and electronics]. Technosphera Publ.; 2018. 488 p. (In Russ.)

Wright P. J., Crosbie M. J., Lane P. A., Williams D. J., Jones A. C., Leedham T. J., Davies H. O. Metal organic chemical vapor deposition (MOCVD) of oxides and ferroelectric materials. Journal of Materials Science: Materials in Electronics. 2002;13(11): 671–678. https://doi.org/10.1023/a:1020618411750

Wahl G., Arndt J., Stadel O. Chemical vapor deposition of superconductor and oxide films. In: Chemical physics of thin film deposition processes for micro- and nano-technologies. Springer; 2002. p. 145–170. https://doi.org/10.1007/978-94-010-0353-7_7

Choy K. L. Chemical vapour deposition of coatings. Progress in Materials Science. 2003;48(2): 57–170. https://doi.org/10.1016/s0079-6425(01)00009-3

Dubourdieu C., Rosina M., Audier M., Weiss F., Sénateur J. P., Dooryhee E., Hodeau J. L. Application of pulsed liquid-injection MOCVD to the growth of ultrathin epitaxial oxides for magnetic heterostructures. Thin Solid Films. 2001;400(1–2): 81–84. https://doi.org/10.1016/s0040-6090(01)01457-2

Samoilenkov S .V., Stefan M. A., Wahl G. MOCVD of thick YSZ coatings using acetylacetonates. Surface and Coatings Technology. 2005;192(1): 117–123. https://doi.org/10.1016/j.surfcoat.2004.03.019

Weiss F., Audier M., Bartasyte A., Bellet D., Girardot C., Jimenez C., … Ternon C. Multifunctional oxide nanostructures by metal-organic chemical vapor deposition (MOCVD). Pure and Applied Chemistry. 2009;81(8): 1523–1534. https://doi.org/10.1351/paccon-08-08-10

Sénateur J.-P., Dubourdieu C., Galindo V., Weiss F., Abrutis A. Application of pulsed injection MOCVD to the deposition of oxide single layers and superlattices. In: Innovative processing of films and nanocrystalline powders. 2002. p. 71–105 https://doi.org/10.1142/9781860949623_0003.

Kartavtseva M. S., Gorbenko O. Y., Kaul A. R., Akbashev A. R., Murzina T. V., Fusil S., Barthélémy A., Pailloux F. BiFeO3 thin films prepared by MOCVD. Surface and Coatings Technology. 2007;201(22-23): 9149–9153. https://doi.org/10.1016/j.surfcoat.2007.04.099

Bibes M., Gorbenko O., Martínez B., Kaul A., Fontcuberta J. Alkaline-doped manganese perovskite thin films grown by MOCVD. Journal of Magnetism and Magnetic Materials. 2000;211(1-3): 47–53. https://doi.org/10.1016/s0304-8853(99)00712-x

Decker W., Erokhin Y., Gorbenko O., Graboy I., Kaul A., Nurnberg A., Pulver M., Stolle R., Wahl G.. Low-pressure single aerosol source MOCVD of YBCO thin films. Journal of Alloys and Compounds. 1993;195(C): 291–294. https://doi.org/10.1016/0925-8388(93)90742-6

Kaul A. R., Seleznev B. V. New principle of feeding for flash evaporation MOCVD devices. Le Journal de Physique IV. 1993;3(3): 375–378. https://doi.org/10.1051/jp4:1993351

Menushenkov A. P., Ivanov V. G., Chepikov V. N., Nygaard R., Soldatenko A., Rudnev I. A., … Monteseguro V. Correlation of local structure peculiarities and critical current density of 2G MOCVD Y B CO tapeswith BaZrO3 nanoinclusions. Superconductor Science and Technology. 2017;30(4): 045003. https://doi.org/10.1088/1361-6668/aa599c

Shukin A. Е., Kaul. A. R., Vasiliev A. L., Rudnev I. A. Synthesis, structure and superconducting properties of aminated thin film composites YBа2Cu3O7–δ/Y2O3 as the components of 2G HTS tapes. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2021;23(1): 122–139. https://doi.org/10.17308/kcmf.2021.23/3313

Kaul A. R., Seleznev B. V., Sharovarov D. I., Nygaard R. R., Osipova Yu. A., Makarevich А. М., Sadykov I. I. Feeding system for supplying volatile compounds in reactors of chemical vapor-phase deposition: Patent No 2722914 RF. Claim. 03.12.2019. Publ. 04.06.2020. Byul. No 2019139340.

Niu G., Zoellner M. H., Schroeder T., Schaefer A., Jhang J. H., Zielasek V., … Reichling M. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems. Physical Chemistry Chemical Physics. 2015;17(38): 24513–2540. https://doi.org/10.1039/c5cp02283e

Kummerle E. A., Heger G. The structures of C-Ce2O3+d, Ce7O12, and Ce11O20. Journal of Solid State Chemistry. 1999;147(2): 485–500. https://doi.org/10.1006/jssc.1999.8403

Hayes W., Stoneham A. M. Defects and defect processes in nonmetallic solids. New York: John Wiley & Sons; 2004. 472 p.

Chowdhury U., Goswami S., Bhattacharya D., Rajput S. S., Mall A. K., Garg A., … Bhattacharya D. Origin of ferroelectricity in orthorhombic LuFeO3. Physical Review B. 2017;100(19): 1–5. https://doi.org/10.1103/physrevb.100.195116

Bossak A., Graboy I., Gorbenko O., Kaul A., Kartavtseva M., Svetchnikov V., Zandbergen H. W. XRD and HREM studies of epitaxially stabilized hexagonal orthoferrites RFeO3 (R = Eu-Lu). Chemistry of Materials. 2004;16(9): 1751–1755. https://doi.org/10.1021/cm0353660

Kaul A. R., Gorbenko O. Yu., Kamenev A. A. The role of heteroepitaxy in the development of new thin-film oxide-based functional materials. Russian Chemical Reviews. 2004;73(9): 861–880. https://doi.org/10.1070/rc2004v073n09abeh000919

Markelova M, Nygaard R, Tsymbarenko D, Shurkina A, Abramov A, Amelichev V, … Kaul A. Multiferroic h-LuFeO3 thin films on (111) and (100) surfaces of YSZ substrates: An experimental and theoretical study. ACS Applied Electronic Materials. 2021;3(2): 1015–1022. https://doi.org/10.1021/acsaelm.0c01127

Zboril R., Mashlan M., Krausova D., Pikal P. Cubic b-Fe2O3 as the product of the thermal decomposition of Fe2(SO4)3. Hyperfine Interact. 1999; 120–121(1–8): 497-501 . https://doi.org/10.1023/a:1017018111071

Manimuthu P., Manikandan M., Selvi M. M., Venkateswaran C. Multiferroic Lu3Fe5O12 for magnetodielectric applications. AIP Conference Proceedings. 2012; 1447(1): 1205–1206. https://doi.org/10.1063/1.4710443

Published
2021-08-17
How to Cite
Kaul, A. R., Nygaard, R. R., Ratovskiy, V. Y., & Vasiliev, A. L. (2021). TSF-MOCVD – a novel technique for chemical vapour deposition on oxide thin films and layered heterostructures. Condensed Matter and Interphases, 23(3), 396-405. https://doi.org/10.17308/kcmf.2021.23/3531
Section
Original articles