TSF-MOCVD – a novel technique for chemical vapour deposition on oxide thin films and layered heterostructures
Abstract
A new principle for supplying volatile precursors to MOCVD gas-phase chemical deposition systems is proposed, based on a two-stage evaporation of an organic solution of precursors from a soaked cotton thread, which passes sequentially through the zones of evaporation of the solvent and precursors. The technological capabilities of TSF-MOCVD (Thread-Solution Feed MOCVD) are demonstrated based on examples of obtaining thin epitaxial films of СеО2, h-LuFeO3 and thin-film heterostructures β-Fe2O3/h-LuFeO3. The results of studying the obtained films by X-ray diffraction, energy dispersive X-ray
analysis, and high- and low-resolution transmission microscopy are presented. Using the TSF module, one can finely vary the crystallisation conditions, obtaining coatings of the required degree of crystallinity, as evidenced by the obtained dependences of the integral width of the h-LuFeO3 reflection on the film growth rate. Based on the TEM and XRD data, it was concluded that β-Fe2O3 grows epitaxially over the h-LuFeO3 layer. Thus, using TSF-MOCVD, one can flexibly change the composition of layered heterostructures and obtain highly crystalline epitaxial films with a clear interface in a continuous deposition process
Downloads
References
Blocher J. Coating by сhemical vapor deposition (CVD). SAE Technical Paper Series. 1973;82: 1780–6. https://doi.org/10.4271/730543
Pierson H. Handbook of chemical vapor deposition. 2nd ed. Noyes Publications; 1999. 506 p. https://doi.org/10.1016/B978-081551432-9.50005-X
Syrkin V. G. CVD- metod. Khimicheskaya parofaznaya matellizatsiya [CVD-method of chemical vapor-phase metallization]. Nauka Publ.; 2000. 495 p. (In Russ.)
Akchurin R. H., Marmalyuk А. А. MOS-gidridnaya epitaksiya v tekhnologii materialov fotoniki i elektroniki [МОС-hydrid epitaxy in the technology of materials for photonics and electronics]. Technosphera Publ.; 2018. 488 p. (In Russ.)
Wright P. J., Crosbie M. J., Lane P. A., Williams D. J., Jones A. C., Leedham T. J., Davies H. O. Metal organic chemical vapor deposition (MOCVD) of oxides and ferroelectric materials. Journal of Materials Science: Materials in Electronics. 2002;13(11): 671–678. https://doi.org/10.1023/a:1020618411750
Wahl G., Arndt J., Stadel O. Chemical vapor deposition of superconductor and oxide films. In: Chemical physics of thin film deposition processes for micro- and nano-technologies. Springer; 2002. p. 145–170. https://doi.org/10.1007/978-94-010-0353-7_7
Choy K. L. Chemical vapour deposition of coatings. Progress in Materials Science. 2003;48(2): 57–170. https://doi.org/10.1016/s0079-6425(01)00009-3
Dubourdieu C., Rosina M., Audier M., Weiss F., Sénateur J. P., Dooryhee E., Hodeau J. L. Application of pulsed liquid-injection MOCVD to the growth of ultrathin epitaxial oxides for magnetic heterostructures. Thin Solid Films. 2001;400(1–2): 81–84. https://doi.org/10.1016/s0040-6090(01)01457-2
Samoilenkov S .V., Stefan M. A., Wahl G. MOCVD of thick YSZ coatings using acetylacetonates. Surface and Coatings Technology. 2005;192(1): 117–123. https://doi.org/10.1016/j.surfcoat.2004.03.019
Weiss F., Audier M., Bartasyte A., Bellet D., Girardot C., Jimenez C., … Ternon C. Multifunctional oxide nanostructures by metal-organic chemical vapor deposition (MOCVD). Pure and Applied Chemistry. 2009;81(8): 1523–1534. https://doi.org/10.1351/paccon-08-08-10
Sénateur J.-P., Dubourdieu C., Galindo V., Weiss F., Abrutis A. Application of pulsed injection MOCVD to the deposition of oxide single layers and superlattices. In: Innovative processing of films and nanocrystalline powders. 2002. p. 71–105 https://doi.org/10.1142/9781860949623_0003.
Kartavtseva M. S., Gorbenko O. Y., Kaul A. R., Akbashev A. R., Murzina T. V., Fusil S., Barthélémy A., Pailloux F. BiFeO3 thin films prepared by MOCVD. Surface and Coatings Technology. 2007;201(22-23): 9149–9153. https://doi.org/10.1016/j.surfcoat.2007.04.099
Bibes M., Gorbenko O., Martínez B., Kaul A., Fontcuberta J. Alkaline-doped manganese perovskite thin films grown by MOCVD. Journal of Magnetism and Magnetic Materials. 2000;211(1-3): 47–53. https://doi.org/10.1016/s0304-8853(99)00712-x
Decker W., Erokhin Y., Gorbenko O., Graboy I., Kaul A., Nurnberg A., Pulver M., Stolle R., Wahl G.. Low-pressure single aerosol source MOCVD of YBCO thin films. Journal of Alloys and Compounds. 1993;195(C): 291–294. https://doi.org/10.1016/0925-8388(93)90742-6
Kaul A. R., Seleznev B. V. New principle of feeding for flash evaporation MOCVD devices. Le Journal de Physique IV. 1993;3(3): 375–378. https://doi.org/10.1051/jp4:1993351
Menushenkov A. P., Ivanov V. G., Chepikov V. N., Nygaard R., Soldatenko A., Rudnev I. A., … Monteseguro V. Correlation of local structure peculiarities and critical current density of 2G MOCVD Y B CO tapeswith BaZrO3 nanoinclusions. Superconductor Science and Technology. 2017;30(4): 045003. https://doi.org/10.1088/1361-6668/aa599c
Shukin A. Е., Kaul. A. R., Vasiliev A. L., Rudnev I. A. Synthesis, structure and superconducting properties of aminated thin film composites YBа2Cu3O7–δ/Y2O3 as the components of 2G HTS tapes. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2021;23(1): 122–139. https://doi.org/10.17308/kcmf.2021.23/3313
Kaul A. R., Seleznev B. V., Sharovarov D. I., Nygaard R. R., Osipova Yu. A., Makarevich А. М., Sadykov I. I. Feeding system for supplying volatile compounds in reactors of chemical vapor-phase deposition: Patent No 2722914 RF. Claim. 03.12.2019. Publ. 04.06.2020. Byul. No 2019139340.
Niu G., Zoellner M. H., Schroeder T., Schaefer A., Jhang J. H., Zielasek V., … Reichling M. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems. Physical Chemistry Chemical Physics. 2015;17(38): 24513–2540. https://doi.org/10.1039/c5cp02283e
Kummerle E. A., Heger G. The structures of C-Ce2O3+d, Ce7O12, and Ce11O20. Journal of Solid State Chemistry. 1999;147(2): 485–500. https://doi.org/10.1006/jssc.1999.8403
Hayes W., Stoneham A. M. Defects and defect processes in nonmetallic solids. New York: John Wiley & Sons; 2004. 472 p.
Chowdhury U., Goswami S., Bhattacharya D., Rajput S. S., Mall A. K., Garg A., … Bhattacharya D. Origin of ferroelectricity in orthorhombic LuFeO3. Physical Review B. 2017;100(19): 1–5. https://doi.org/10.1103/physrevb.100.195116
Bossak A., Graboy I., Gorbenko O., Kaul A., Kartavtseva M., Svetchnikov V., Zandbergen H. W. XRD and HREM studies of epitaxially stabilized hexagonal orthoferrites RFeO3 (R = Eu-Lu). Chemistry of Materials. 2004;16(9): 1751–1755. https://doi.org/10.1021/cm0353660
Kaul A. R., Gorbenko O. Yu., Kamenev A. A. The role of heteroepitaxy in the development of new thin-film oxide-based functional materials. Russian Chemical Reviews. 2004;73(9): 861–880. https://doi.org/10.1070/rc2004v073n09abeh000919
Markelova M, Nygaard R, Tsymbarenko D, Shurkina A, Abramov A, Amelichev V, … Kaul A. Multiferroic h-LuFeO3 thin films on (111) and (100) surfaces of YSZ substrates: An experimental and theoretical study. ACS Applied Electronic Materials. 2021;3(2): 1015–1022. https://doi.org/10.1021/acsaelm.0c01127
Zboril R., Mashlan M., Krausova D., Pikal P. Cubic b-Fe2O3 as the product of the thermal decomposition of Fe2(SO4)3. Hyperfine Interact. 1999; 120–121(1–8): 497-501 . https://doi.org/10.1023/a:1017018111071
Manimuthu P., Manikandan M., Selvi M. M., Venkateswaran C. Multiferroic Lu3Fe5O12 for magnetodielectric applications. AIP Conference Proceedings. 2012; 1447(1): 1205–1206. https://doi.org/10.1063/1.4710443
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.